Board info: https://store.arduino.cc/usa/nano-33-ble-sense
Arduino On-chip AI: https://www.arduino.cc/en/AI/HomePage
- On Arduino app:
- 下載程式褲:Arduino ➡️ 工具 ➡️ 管理程式庫 ➡️ 搜尋Arduino_TensorFlowLite & Arduino_LSM9DS1 & ArduinoBLE,etc ➡️ Install
- 下載開發版:Arduino ➡️ 開發版 ➡️ 開發版管理員 ➡️ 搜尋Arduino nRF528x Boards (Mbed OS)或Arduino Nano 33 bl > install
- 燒錄器(programmer)設定為
AVRISP mkll
- On Arduino web editor:
- Sign in: https://create.arduino.cc
- Install Arduino Create Agent: https://create.arduino.cc/getting-started/plugin/install (So that web editor could detect your board which is connected to PC via USB port!)
- Search for libraries you need!
Imfortant Ref: https://blog.arduino.cc/2019/10/15/get-started-with-machine-learning-on-arduino/
- Examples in Arduino_TensorFlowLite :micro_speech, person_detection, etc.
- Examples in Arduino_LSM9DS1 helps to read accelerometer and gyroscope(陀螺儀) values
- Examples in ArduinoBLE deal with BLE connection tasks
- 視所需下載程式庫,尚有溫濕度、壓力感測等等範例可使用...
- 在Arduino執行
IMU_Capture.ino
來搜集姿勢資料(手握Arduino進行flex與punch兩種動作,或其他欲進行辨識的動作) ➡️ 複製序列埠data ➡️ 將一種姿勢資料做成.csv檔案。記得將空白列刪除(可透過excel),否則訓練時會出現nan錯誤。 - 開啟
arduino_gesture_recog.ipynb
➡️ 匯入flex.csv與punch.csv檔案 ➡️ 進行訓練 ➡️ 匯出model.h
- 回到Arduino開啟
IMU_Classifier.ino
- 在Arduino新增Tab ➡️ 命名為
model.h
➡️ 將由colab(ipynb file)匯出之model.h
內容複製貼上。(或是直接將model.h
放置於IMU_Classifier資料夾內) - 最後編譯上傳
IMU_Classifier.ino
至開發版,開啟序列埠 - Future Attempt: 利用
Emoji_Button.ino
來輸出Gesture圖案 - Other pojects: https://create.arduino.cc/projecthub/dgiancono/nano33blesensor-getting-started-with-the-nano-33-ble-sense-8a7eba