-
Notifications
You must be signed in to change notification settings - Fork 28
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'main' into daoxin/ascend_stable_diffusion
- Loading branch information
Showing
76 changed files
with
1,860 additions
and
325 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,5 +1,7 @@ | ||
--- | ||
Language: Cpp | ||
BasedOnStyle: Google | ||
BreakAfterAttributes: Leave | ||
CommentPragmas: '^ (IWYU pragma:|NOLINT(BEGIN|END|NEXTLINE)?(\(.+\))?:? )' | ||
DerivePointerAlignment: false | ||
InsertNewlineAtEOF: true |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,293 @@ | ||
import torch | ||
import torch._dynamo.variables.torch | ||
import torch.fx.graph | ||
from torch.fx.graph import ( | ||
_Namespace, | ||
PythonCode, | ||
_custom_builtins, | ||
_format_target, | ||
magic_methods, | ||
inplace_methods, | ||
dtype_abbrs, | ||
_origin_type_map | ||
) | ||
from torch.fx.node import ( | ||
Argument, | ||
Node, | ||
map_arg, | ||
_type_repr, | ||
_get_qualified_name | ||
) | ||
from typing import Any, Tuple, Dict, List | ||
import re | ||
|
||
|
||
def python_type_bar(self): | ||
return type(self.value) | ||
|
||
|
||
def _gen_python_code_bar(self, nodes, root_module: str, namespace: _Namespace, *, verbose: bool = False) -> PythonCode: | ||
free_vars: List[str] = [] | ||
body: List[str] = [] | ||
globals_: Dict[str, Any] = {} | ||
wrapped_fns: Dict[str, None] = {} | ||
|
||
# Wrap string in list to pass by reference | ||
maybe_return_annotation: List[str] = [''] | ||
|
||
def add_global(name_hint: str, obj: Any): | ||
"""Add an obj to be tracked as a global. | ||
We call this for names that reference objects external to the | ||
Graph, like functions or types. | ||
Returns: the global name that should be used to reference 'obj' in generated source. | ||
""" | ||
# normalize the name hint to get a proper identifier | ||
global_name = namespace.create_name(name_hint, obj) | ||
|
||
if global_name in globals_: | ||
assert globals_[global_name] is obj | ||
return global_name | ||
globals_[global_name] = obj | ||
return global_name | ||
|
||
# Pre-fill the globals table with registered builtins. | ||
for name, (_, obj) in _custom_builtins.items(): | ||
add_global(name, obj) | ||
|
||
def type_repr(o: Any): | ||
if o == (): | ||
# Empty tuple is used for empty tuple type annotation Tuple[()] | ||
return '()' | ||
|
||
typename = _type_repr(o) | ||
|
||
if hasattr(o, '__origin__'): | ||
# This is a generic type, e.g. typing.List[torch.Tensor] | ||
origin_type = _origin_type_map.get(o.__origin__, o.__origin__) | ||
origin_typename = add_global(_type_repr(origin_type), origin_type) | ||
|
||
if hasattr(o, '__args__'): | ||
# Assign global names for each of the inner type variables. | ||
args = [type_repr(arg) for arg in o.__args__] | ||
|
||
if len(args) == 0: | ||
# Bare type, such as `typing.Tuple` with no subscript | ||
# This code-path used in Python < 3.9 | ||
return origin_typename | ||
|
||
return f'{origin_typename}[{",".join(args)}]' | ||
else: | ||
# Bare type, such as `typing.Tuple` with no subscript | ||
# This code-path used in Python 3.9+ | ||
return origin_typename | ||
|
||
# Common case: this is a regular module name like 'foo.bar.baz' | ||
return add_global(typename, o) | ||
|
||
def _format_args(args: Tuple[Argument, ...], kwargs: Dict[str, Argument]) -> str: | ||
def _get_repr(arg): | ||
# Handle NamedTuples (if it has `_fields`) via add_global. | ||
if isinstance(arg, tuple) and hasattr(arg, '_fields'): | ||
qualified_name = _get_qualified_name(type(arg)) | ||
global_name = add_global(qualified_name, type(arg)) | ||
return f"{global_name}{repr(tuple(arg))}" | ||
elif isinstance(arg, torch._ops.OpOverload): | ||
qualified_name = _get_qualified_name(arg) | ||
global_name = add_global(qualified_name, arg) | ||
return f"{global_name}" | ||
return repr(arg) | ||
args_s = ', '.join(_get_repr(a) for a in args) | ||
kwargs_s = ', '.join(f'{k} = {_get_repr(v)}' for k, v in kwargs.items()) | ||
if args_s and kwargs_s: | ||
return f'{args_s}, {kwargs_s}' | ||
return args_s or kwargs_s | ||
|
||
# Run through reverse nodes and record the first instance of a use | ||
# of a given node. This represents the *last* use of the node in the | ||
# execution order of the program, which we will use to free unused | ||
# values | ||
node_to_last_use: Dict[Node, Node] = {} | ||
user_to_last_uses: Dict[Node, List[Node]] = {} | ||
|
||
def register_last_uses(n: Node, user: Node): | ||
if n not in node_to_last_use: | ||
node_to_last_use[n] = user | ||
user_to_last_uses.setdefault(user, []).append(n) | ||
|
||
for node in reversed(nodes): | ||
map_arg(node.args, lambda n: register_last_uses(n, node)) | ||
map_arg(node.kwargs, lambda n: register_last_uses(n, node)) | ||
|
||
def delete_unused_values(user: Node): | ||
""" | ||
Delete values after their last use. This ensures that values that are | ||
not used in the remainder of the code are freed and the memory usage | ||
of the code is optimal. | ||
""" | ||
if user.op == 'placeholder': | ||
return | ||
if user.op == 'output': | ||
body.append('\n') | ||
return | ||
nodes_to_delete = user_to_last_uses.get(user, []) | ||
if len(nodes_to_delete): | ||
to_delete_str = ' = '.join([repr(n) for n in nodes_to_delete] + ['None']) | ||
body.append(f'; {to_delete_str}\n') | ||
else: | ||
body.append('\n') | ||
|
||
prev_stacktrace = None | ||
|
||
def append_stacktrace_summary(node: Node): | ||
""" | ||
Append a summary of the stacktrace to the generated code. This is | ||
useful for debugging. | ||
""" | ||
nonlocal prev_stacktrace | ||
pattern = re.compile(r"^File \"(.+)\", line (\d+), in (.+)$") | ||
|
||
if node.op not in {'placeholder', 'output'}: | ||
if node.stack_trace: | ||
if node.stack_trace != prev_stacktrace: | ||
prev_stacktrace = node.stack_trace | ||
|
||
lines = node.stack_trace.strip().split('\n') | ||
# stacktrace should have innermost frame last, so we | ||
# iterate backwards to find the first line that starts | ||
# with 'File ' | ||
summary_str = "" | ||
for idx in range(len(lines) - 2, -1, -1): | ||
line = lines[idx].strip() | ||
matches = pattern.match(line) | ||
if matches: | ||
file = matches.group(1) | ||
lineno = matches.group(2) | ||
# next line should be the code | ||
code = lines[idx + 1].strip() | ||
summary_str = f'File: {file}:{lineno}, code: {code}' | ||
break | ||
body.append(f'\n# {summary_str}\n') | ||
elif prev_stacktrace != "": | ||
prev_stacktrace = "" | ||
body.append('\n# No stacktrace found for following nodes\n') | ||
|
||
def stringify_shape(shape: torch.Size) -> str: | ||
return f"[{', '.join(str(x) for x in shape)}]" | ||
|
||
def emit_node(node: Node): | ||
maybe_type_annotation = '' if node.type is None else f' : {type_repr(node.type)}' | ||
|
||
if verbose: | ||
# override annotation with more detailed information | ||
from torch._subclasses.fake_tensor import FakeTensor | ||
from torch.fx.experimental.proxy_tensor import py_sym_types | ||
from torch.fx.passes.shape_prop import TensorMetadata | ||
|
||
meta_val = node.meta.get('val', node.meta.get('tensor_meta', None)) | ||
|
||
if isinstance(meta_val, FakeTensor): | ||
maybe_type_annotation = f': {dtype_abbrs[meta_val.dtype]}{stringify_shape(meta_val.shape)}' | ||
elif isinstance(meta_val, py_sym_types): | ||
maybe_type_annotation = f': Sym({meta_val})' | ||
elif isinstance(meta_val, TensorMetadata): | ||
maybe_type_annotation = f': {dtype_abbrs[meta_val.dtype]}{stringify_shape(meta_val.shape)}' | ||
|
||
if node.op == 'placeholder': | ||
assert isinstance(node.target, str) | ||
maybe_default_arg = '' if not node.args else f' = {repr(node.args[0])}' | ||
free_vars.append(f'{node.target}{maybe_type_annotation}{maybe_default_arg}') | ||
raw_name = node.target.replace('*', '') | ||
if raw_name != repr(node): | ||
body.append(f'{repr(node)} = {raw_name}\n') | ||
return | ||
elif node.op == 'call_method': | ||
assert isinstance(node.target, str) | ||
body.append( | ||
f'{repr(node)}{maybe_type_annotation} = {_format_target(repr(node.args[0]), node.target)}' | ||
f'({_format_args(node.args[1:], node.kwargs)})') | ||
return | ||
elif node.op == 'call_function': | ||
assert callable(node.target) | ||
# pretty print operators | ||
if getattr(node.target, "__module__", "") == '_operator' and node.target.__name__ in magic_methods: | ||
assert isinstance(node.args, tuple) | ||
body.append(f'{repr(node)}{maybe_type_annotation} = ' | ||
f'{magic_methods[node.target.__name__].format(*(repr(a) for a in node.args))}') | ||
return | ||
|
||
# pretty print inplace operators; required for jit.script to work properly | ||
# not currently supported in normal FX graphs, but generated by torchdynamo | ||
if getattr(node.target, "__module__", "") == '_operator' and node.target.__name__ in inplace_methods: | ||
body.append(f'{inplace_methods[node.target.__name__].format(*(repr(a) for a in node.args))}; ' | ||
f'{repr(node)}{maybe_type_annotation} = {repr(node.args[0])}') | ||
return | ||
|
||
qualified_name = _get_qualified_name(node.target) | ||
global_name = add_global(qualified_name, node.target) | ||
# special case for getattr: node.args could be 2-argument or 3-argument | ||
# 2-argument: attribute access; 3-argument: fall through to attrib function call with default value | ||
if global_name == 'getattr' and \ | ||
isinstance(node.args, tuple) and \ | ||
isinstance(node.args[1], str) and \ | ||
node.args[1].isidentifier() and \ | ||
len(node.args) == 2: | ||
body.append(f'{repr(node)}{maybe_type_annotation} = {_format_target(repr(node.args[0]), node.args[1])}') | ||
return | ||
body.append(f'{repr(node)}{maybe_type_annotation} = {global_name}({_format_args(node.args, node.kwargs)})') | ||
if node.meta.get('is_wrapped', False): | ||
wrapped_fns.setdefault(global_name) | ||
return | ||
elif node.op == 'call_module': | ||
assert isinstance(node.target, str) | ||
body.append(f'{repr(node)}{maybe_type_annotation} = ' | ||
f'{_format_target(root_module, node.target)}({_format_args(node.args, node.kwargs)})') | ||
return | ||
elif node.op == 'get_attr': | ||
assert isinstance(node.target, str) | ||
body.append(f'{repr(node)}{maybe_type_annotation} = {_format_target(root_module, node.target)}') | ||
return | ||
elif node.op == 'output': | ||
if node.type is not None: | ||
maybe_return_annotation[0] = f" -> {type_repr(node.type)}" | ||
body.append(self.generate_output(node.args[0])) | ||
return | ||
raise NotImplementedError(f'node: {node.op} {node.target}') | ||
|
||
for node in nodes: | ||
# NOTE: emit_node does not emit a string with newline. It depends | ||
# on delete_unused_values to append one | ||
if verbose: | ||
append_stacktrace_summary(node) | ||
emit_node(node) | ||
delete_unused_values(node) | ||
|
||
if len(body) == 0: | ||
# If the Graph has no non-placeholder nodes, no lines for the body | ||
# have been emitted. To continue to have valid Python code, emit a | ||
# single pass statement | ||
body.append('pass\n') | ||
|
||
if len(wrapped_fns) > 0: | ||
wrap_name = add_global('wrap', torch.fx.wrap) | ||
wrap_stmts = '\n'.join([f'{wrap_name}("{name}")' for name in wrapped_fns]) | ||
else: | ||
wrap_stmts = '' | ||
|
||
if self._body_transformer: | ||
body = self._body_transformer(body) | ||
|
||
for name, value in self.additional_globals(): | ||
add_global(name, value) | ||
|
||
prologue = self.gen_fn_def(free_vars, maybe_return_annotation[0]) | ||
|
||
code = ''.join(body).lstrip('\n') | ||
code = '\n'.join(' ' + line for line in code.split('\n')) | ||
fn_code = f"{wrap_stmts}\n{prologue}\n{code}" | ||
return PythonCode(fn_code, globals_) | ||
|
||
|
||
torch._dynamo.variables.torch.TorchVariable.python_type = python_type_bar | ||
torch.fx.graph.CodeGen._gen_python_code = _gen_python_code_bar |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.