Skip to content

Robust multiscale time-average variance estimation for change point detection

Notifications You must be signed in to change notification settings

EuanMcGonigle/TAVC.seg

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 

Repository files navigation

TAVC.seg

Robust multiscale time-average variance estimation for change point detection.

Software accompanying

E. T. McGonigle and H. Cho (2023) "Robust multiscale estimation of time-average variance for time series segmentation".

  • The main routines are contained in main.R.

To perform robust TAVC estimation, do the following:

  • Source main.R into R.
  • Read the description for robust.tavc.est within main.R.

To perform mean change point detection with the robust TAVC estimation procedure

  • Using the multiscale bottom-up MOSUM procedure: install the MOSUM R package and read the description in `mosum.tavc'.
  • Using the wild binary segmentation 2 algorithm: install the breakfast R package and read the description in `WBS2.tavc'.

For example,


cpt.sig = c(rep(0,200),rep(2,300),rep(4,200),rep(2,300))

set.seed(123)

x = cpt.sig + arima.sim(model = list(ar = 0.5), sd = sqrt(1-0.5^2), n = 1000)
x.m.c = mosum.tavc(x,G = c(30,60,90,150), alpha = 0.05)

x.m.c$cpts

x.w.c = wbs2.tavc(x, min.int.len = 60)

x.w.c$cpts


If you have any questions, please contact euan.mcgonigle@bristol.ac.uk

About

Robust multiscale time-average variance estimation for change point detection

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages