-
-
Notifications
You must be signed in to change notification settings - Fork 21
Core Package API
gc = GlobalChem()
Code:
gc.print_globalchem_network()
Output:
┌solvents─common_organic_solvents
┌organic_synthesis─└protecting_groups─amino_acid_protecting_groups
│ ┌polymers─common_monomer_repeating_units
├materials─└clay─montmorillonite_adsorption
│ ┌privileged_kinase_inhibtors
│ ├privileged_scaffolds
├proteins─kinases─┌scaffolds─├iupac_blue_book_substituents
│ │ └common_r_group_replacements
│ └braf─inhibitors
│ ┌vitamins
│ ├open_smiles
├miscellaneous─├amino_acids
│ └regex_patterns
global_chem──├environment─emerging_perfluoroalkyls
│ ┌schedule_one
│ ├schedule_four
│ ├schedule_five
├narcotics─├pihkal
│ ├schedule_two
│ └schedule_three
├interstellar_space
│ ┌cannabinoids
│ │ ┌electrophillic_warheads_for_kinases
│ ├warheads─└common_warheads_covalent_inhibitors
└medicinal_chemistry─│ ┌phase_2_hetereocyclic_rings
└rings─├iupac_blue_book_rings
└rings_in_drugs
Code:
gc = GlobalChem()
nodes_list = gc.check_available_nodes()
print (nodes_list)
Output:
'emerging_perfluoro_alkyls',
'montmorillonite_adsorption',
'common_monomer_repeating_units',
'electrophilic_warheads_for_kinases',
nodes_list = gc.get_all_nodes()
gc = GlobalChem()
depth = gc.get_depth_of_globalchem()
gc = GlobalChem()
depth = gc.get_all_smiles()
gc = GlobalChem()
depth = gc.get_all_smarts()
gc = GlobalChem()
depth = gc.get_all_names()
This function fetches the distance between two words using the Levenshtein distance with a distance tolerance number. It removes both grammar and upper case letters automatically and tries to match the best fitting word against the query and return their dedicated paths. Users have the option to return the exact definition or partial definitions.
Code:
definition = gc.get_smiles_by_iupac(
'benzene',
distance_tolerance=7,
return_partial_definitions=True
)
print (definition)
Output:
[{'methylbenzoate': 'c1ccc(C(=O)OC)cc1', 'network_path': 'global_chem.medicinal_chemistry.scaffolds.common_r_group_replacements', 'levenshtein_distance': 7}]
You have the option to do a fuzzy reconstruction of the SMILES from the IUPAC used stripped grammar and functional groups:
definition = gc.get_smiles_by_iupac(
'(4R,4aR,7S,7aR,12bS)-3-methyl-2,4,4a,7,7a,13-hexahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinoline-7,9-diol',
distance_tolerance=2,
return_partial_definitions=False,
reconstruct_smiles=True,
)
print (definition)
Output:
C12=C(C=NC=C2)C=CC=C1.C12=C(C=NC=C2)C=CC=C1.[CH2]CCCCCCCCCCCCCCC.[CH2]C.[CH3].SC.c1cncc2ccccc12.C12=CC=CC=C1C=NC=C2.C.CC.C[C@H]1[C@H](C(C)C)CC[C@@H](C)C1.[CH3].S
gc = GlobalChem()
gc.build_global_chem_network(
print_output=True, # Print the network out
debugger=False, # For Developers mostly to see all node values
)
Output:
'global_chem': {
'children': [
'environment',
'miscellaneous',
'organic_synthesis',
'medicinal_chemistry',
'narcotics',
'interstellar_space',
'proteins',
'materials'
],
'name': 'global_chem',
'node_value': <global_chem.global_chem.Node object at 0x10f60eed0>,
'parents': []
},
The algorithm uses a series of parents/children to connect nodes instead of "edges" as in traditional graph networks. This just makes it easier to code if the graph database lives as a 1-dimensional with lists of parents and children's connected in this fashion.
gc = GlobalChem()
gc.build_global_chem_network()
node = gc.get_node('emerging_perfluoroalkyls')
print (node)
Output:
{
'node_value': <global_chem.global_chem.Node object at 0x117fee210>,
'children': [],
'parents': ['emerging_perfluoroalkyls'],
'name': 'emerging_perfluoroalkyls'
}
gc = GlobalChem()
gc.build_global_chem_network()
smiles = gc.get_node_smiles('emerging_perfluoroalkyls')
smarts = gc.get_node_smarts('emerging_perfluoroalkyls')
print ("Length of Perfluoroalkyls: %s " % len(smiles))
from global_chem import GlobalChem
gc = GlobalChem(verbose=False)
gc.initiate_network()
gc.add_node('global_chem', 'common_monomer_repeating_units')
gc.add_node('common_monomer_repeating_units','electrophilic_warheads_for_kinases')
values = gc.get_node_smiles('common_monomer_repeating_units')
print (values)
Output:
'3′-bromo-2-chloro[1,1′:4′,1′′-terphenyl]-4,4′′':
'ClC1=CC=CC=C1C2=CC=C(C3=CC=CC=C3)C(Br)=C2'
This is for the more advanced users of building networks and how to manage sets of layers.
# Create a Deep Layer Network
gc = GlobalChem()
gc.initiate_deep_layer_network()
gc.add_deep_layer(
[
'emerging_perfluoroalkyls',
'montmorillonite_adsorption',
'common_monomer_repeating_units'
]
)
gc.add_deep_layer(
[
'common_warheads_covalent_inhibitors',
'privileged_scaffolds',
'iupac_blue_book'
]
)
gc.print_deep_network()
Output:
┌common_warhead_covalent_inhibitors
┌emerging_perfluoroalkyls─├privileged_scaffolds
│ └iupac_blue_book
│ ┌common_warhead_covalent_inhibitors
global_chem─├montmorillonite_adsorption─├privileged_scaffolds
│ └iupac_blue_book
│ ┌common_warhead_covalent_inhibitors
└common_monomer_repeating_units─├privileged_scaffolds
└iupac_blue_book
Common Score Algorithm:
- Datamine the current graph network of GlobalChem
- Get the object weights of each mention
- Determine the mention weight
- Sum the Weight's and that is how common the molecule is.
The higher the value the higher the common score tied with it's IUPAC name.
gc = GlobalChem()
gc.build_global_chem_network(print_output=False, debugger=False)
gc.compute_common_score('benzene', verbose=True)
Output:
GlobalChem Common Score: 7.139921294271971
The network returned in all CSV format for interoperability for web application development mostly but can also be used to search.
gc = GlobalChem()
gc.to_tsv('global_chem.tsv')
If you are curious about our software or have any questions, feel free to contact us!