An R 📦 to download open water quality data from Environment and Climate Change Canada’s National Long-term Water Quality Monitoring Data.
This package is designed to get Canadian Water Quality Monitoring data into R quickly and easily. You can get data from a single monitoring station, multiple stations, or from an entire basin.
remotes::install_github("bcgov/canwqdata")
First load the package:
library(canwqdata)
The first thing you will probably want to do is get a list of the available sites and associated metadata:
sites <- wq_sites()
sites
#> # A tibble: 339 x 16
#> SITE_NO SITE_NAME SITE_NOM_FR SITE_TYPE SITE_DESC SITE_DESC_FR LATITUDE
#> <chr> <chr> <chr> <chr> <chr> <chr> <dbl>
#> 1 72 BEAUHARN… CANAL DE B… RIVER/RI… <NA> <NA> 45.2
#> 2 75 ST.LAWRE… FLEUVE SAI… RIVER/RI… <NA> <NA> 45.9
#> 3 78 ST.LAWRE… FLEUVE SAI… RIVER/RI… <NA> <NA> 45.4
#> 4 2330001 ETCHEMIN… RIVIÈRE ET… RIVER/RI… <NA> <NA> 46.8
#> 5 2340033 CHAUDIÈR… RIVIÈRE CH… RIVER/RI… <NA> <NA> 46.7
#> 6 2400004 BÉCANCOU… RIVIÈRE BÉ… RIVER/RI… <NA> <NA> 46.4
#> 7 3020073 MAGOG RI… RIVIÈRE MA… RIVER/RI… <NA> <NA> 45.3
#> 8 3020333 COATICOO… RIVIÈRE CO… RIVER/RI… <NA> <NA> 45.3
#> 9 3040010 RICHELIE… RIVIÈRE RI… RIVER/RI… <NA> <NA> 45.4
#> 10 3040012 RICHELIE… RIVIÈRE RI… RIVER/RI… <NA> <NA> 45.1
#> # … with 329 more rows, and 9 more variables: LONGITUDE <dbl>, DATUM <chr>,
#> # PROV_TERR <chr>, PEARSEDA <chr>, PEARSEDA_FR <chr>, OCEANDA <chr>,
#> # OCEANDA_FR <chr>, DATA_URL <chr>, DATA_URL_FR <chr>
Then get some data from a particular station:
AL07AA0015
is a site in Alberta called Athabasca River above
Athabasca Falls
athabasca_falls <- wq_site_data("AL07AA0015")
athabasca_falls
#> # A tibble: 10,538 x 11
#> SITE_NO DATE_TIME_HEURE FLAG_MARQUEUR VALUE_VALEUR SDL_LDE MDL_LDM
#> <chr> <dttm> <chr> <dbl> <dbl> <dbl>
#> 1 AL07AA… 2000-01-11 13:05:00 <NA> 93.2 NA NA
#> 2 AL07AA… 2000-01-11 13:05:00 < 0.02 NA NA
#> 3 AL07AA… 2000-01-11 13:05:00 < 0.005 NA NA
#> 4 AL07AA… 2000-01-11 13:05:00 <NA> 0 NA NA
#> 5 AL07AA… 2000-01-11 13:05:00 < 0.0001 NA NA
#> 6 AL07AA… 2000-01-11 13:05:00 <NA> 0.065 NA NA
#> 7 AL07AA… 2000-01-11 13:05:00 < 0.5 NA NA
#> 8 AL07AA… 2000-01-11 13:05:00 <NA> 114. NA NA
#> 9 AL07AA… 2000-01-11 13:05:00 < 0.002 NA NA
#> 10 AL07AA… 2000-01-11 13:05:00 < 0.001 NA NA
#> # … with 10,528 more rows, and 5 more variables: VMV_CODE <chr>,
#> # UNIT_UNITE <chr>, VARIABLE <chr>, VARIABLE_FR <chr>, STATUS_STATUT <chr>
We can also get data from more than one station:
wq_site_data(c("YT09FC0002", "SA05JM0014"))
#> # A tibble: 23,932 x 11
#> SITE_NO DATE_TIME_HEURE FLAG_MARQUEUR VALUE_VALEUR SDL_LDE MDL_LDM
#> <chr> <dttm> <chr> <dbl> <dbl> <dbl>
#> 1 SA05JM… 2000-03-07 12:45:00 <NA> 0 NA NA
#> 2 SA05JM… 2000-03-07 12:45:00 <NA> 253 NA NA
#> 3 SA05JM… 2000-03-07 12:45:00 <NA> 0.047 NA NA
#> 4 SA05JM… 2000-03-07 12:45:00 <NA> 0.607 NA NA
#> 5 SA05JM… 2000-03-07 12:45:00 <NA> 0.079 NA NA
#> 6 SA05JM… 2000-03-07 12:45:00 <NA> 0.001 NA NA
#> 7 SA05JM… 2000-03-07 12:45:00 <NA> 0.039 NA NA
#> 8 SA05JM… 2000-03-07 12:45:00 <NA> 0.0569 NA NA
#> 9 SA05JM… 2000-03-07 12:45:00 < 0.5 NA NA
#> 10 SA05JM… 2000-03-07 12:45:00 < 0.05 NA NA
#> # … with 23,922 more rows, and 5 more variables: VMV_CODE <chr>,
#> # UNIT_UNITE <chr>, VARIABLE <chr>, VARIABLE_FR <chr>, STATUS_STATUT <chr>
Or an entire basin:
The basins are in the PEARSEDA
column of the data.frame returned by
wq_sites()
:
basins <- sort(unique(sites$PEARSEDA))
basins
#> [1] "ARCTIC COAST-ISLANDS" "ASSINIBOINE-RED"
#> [3] "CHURCHILL" "COLUMBIA"
#> [5] "FRASER-LOWER MAINLAND" "GREAT LAKES"
#> [7] "KEEWATIN-SOUTHERN BAFFIN" "LOWER MACKENZIE"
#> [9] "LOWER SASKATCHEWAN-NELSON" "MARITIME COASTAL"
#> [11] "MISSOURI" "NEWFOUNDLAND-LABRADOR"
#> [13] "NORTH SASKATCHEWAN" "NORTH SHORE-GASPÉ"
#> [15] "OKANAGAN-SIMILKAMEEN" "OTTAWA"
#> [17] "PACIFIC COASTAL" "PEACE-ATHABASCA"
#> [19] "SAINT JOHN-ST. CROIX" "SOUTH SASKATCHEWAN"
#> [21] "ST. LAWRENCE" "WINNIPEG"
#> [23] "YUKON"
fraser <- wq_basin_data("FRASER-LOWER MAINLAND")
Do some quick summary stats of the fraser dataset:
library(dplyr)
fraser %>%
group_by(SITE_NO) %>%
summarise(first_date = min(DATE_TIME_HEURE),
latest_date = max(DATE_TIME_HEURE),
n_params = length(unique(VARIABLE)),
total_samples = n())
#> # A tibble: 15 x 5
#> SITE_NO first_date latest_date n_params total_samples
#> <chr> <dttm> <dttm> <int> <int>
#> 1 BC08KA0007 2000-01-12 07:45:00 2019-09-12 08:58:00 108 24941
#> 2 BC08KE0010 2000-01-05 00:00:00 2019-09-16 10:00:00 76 23477
#> 3 BC08KH0012 2006-05-11 13:07:00 2019-09-29 08:30:00 140 19511
#> 4 BC08KH0013 2014-06-16 12:45:00 2019-09-23 09:45:00 107 10375
#> 5 BC08KH0014 2014-09-23 14:00:00 2019-09-09 06:55:00 110 9397
#> 6 BC08LC0005 2011-02-24 09:45:00 2019-09-18 11:20:00 69 11866
#> 7 BC08LE0004 2000-01-04 10:00:00 2019-10-02 11:30:00 112 23469
#> 8 BC08LF0001 2000-01-05 12:00:00 2014-12-15 10:20:00 89 18410
#> 9 BC08LG0001 2003-06-24 10:45:00 2019-09-18 14:30:00 71 10366
#> 10 BC08MB0007 2004-11-15 12:00:00 2019-10-01 12:21:00 105 21297
#> 11 BC08MC0001 2000-04-18 16:30:00 2019-09-30 08:37:00 107 21775
#> 12 BC08MF0001 2000-01-04 14:10:00 2019-09-12 12:00:00 129 21475
#> 13 BC08MH0027 2000-01-07 12:16:00 2019-09-24 12:02:00 115 34775
#> 14 BC08MH0269 2004-03-03 14:40:00 2019-09-24 13:45:00 137 25932
#> 15 BC08MH0453 2008-09-02 16:25:00 2019-09-30 12:00:00 107 13389
We can also look at metadata that helps us understand what is in the different columns.
wq_params()
returns a list of water quality parameters (variables),
and related data - units, methods, codes, etc:
params <- wq_params()
glimpse(params)
#> Observations: 1,964
#> Variables: 12
#> $ VMV_CODE <chr> "77", "78", "79", "80", "157", "160", "201", …
#> $ NATIONAL_VARIABLE_CODE <chr> "635", "365", "4541", "414", "864", "1073", "…
#> $ VARIABLE_COMMON_NAME <chr> "Nitrogen total", "Alkalinity total HCO3", "C…
#> $ VARIABLE_COMMON_NAME_FR <chr> "Azote total", "Alcalinité totale HCO3", "Chl…
#> $ VARIABLE_TYPE <chr> "Nitrogen", "Physical", "Chlorophyll", "Chlor…
#> $ VARIABLE_TYPE_FR <chr> "Azote", "Physique", "Chlorophylle", "Chlorop…
#> $ MEASUREMENT_UNIT <chr> "mg/L", "mg/L", "µg/L", "µg/L", "NTU", "mg/L"…
#> $ DESCRIPTION <chr> "milligram per liter", "milligram per liter",…
#> $ DESCRIPTION_FR <chr> "milligramme par litre", "milligramme par lit…
#> $ NATIONAL_METHOD_CODE <chr> "23", "30", "35", "41", "188", "189", "8", "9…
#> $ METHOD_TITLE <chr> "Total nitrogen measurement by persulfate oxi…
#> $ METHOD_TITLE_FR <chr> "Azote total par la méthode d'oxydation au pe…
# wq_param_desc shows the column headings (in all other tables) and what they mean
wq_data_desc() %>%
glimpse()
#> Observations: 39
#> Variables: 5
#> $ COL_TITLE_TITRE <chr> "COL_DESCRIPTION", "COL_DESCRIPTION_FR", "COL_TITL…
#> $ COL_TITLE_FULL <chr> "COLUMN HEADER DESCRIPTION", "COLUMN HEADER DESCRI…
#> $ COL_TITRE_COMPLET <chr> "DESCRIPTION DE L'EN-TÊTE DE COLONNE", "DESCRIPTIO…
#> $ COL_DESCRIPTION <chr> "COLUMN HEADER DESCRIPTION", "COLUMN HEADER DESCRI…
#> $ COL_DESCRIPTION_FR <chr> "DESCRIPTION DE L'EN-TÊTE DE COLONNE", "DESCRIPTIO…
Let’s look at Total Nitrogen in the Fraser basin:
fraser_n_total <- fraser %>% filter(VARIABLE == "NITROGEN TOTAL")
Now lets do some plotting - plot Total Nitrogen over time at all the sites, (plot it on a log scale so that they all fit)
library(ggplot2)
ggplot(fraser_n_total, aes(x = DATE_TIME_HEURE, y = VALUE_VALEUR)) +
geom_point(size = 0.4, alpha = 0.4, colour = "purple") +
facet_wrap(~ SITE_NO) +
scale_y_log10()
It’s also possible to download data from an entire province:
bc_sites <- sites %>%
filter(PROV_TERR == "BC") %>%
pull(SITE_NO)
all_bc_data <- wq_site_data(bc_sites)
glimpse(all_bc_data)
#> Observations: 925,542
#> Variables: 11
#> $ SITE_NO <chr> "BC07FB0005", "BC07FB0005", "BC07FB0005", "BC07FB0005…
#> $ DATE_TIME_HEURE <dttm> 2017-01-25 09:35:00, 2017-01-25 09:35:00, 2017-01-25…
#> $ FLAG_MARQUEUR <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "<", NA, …
#> $ VALUE_VALEUR <dbl> 163.000, 4.100, 31.900, 0.060, 0.061, 0.130, 0.150, 1…
#> $ SDL_LDE <dbl> 1.000, 0.500, 0.500, 0.001, 0.001, 0.010, 0.010, 0.05…
#> $ MDL_LDM <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…
#> $ VMV_CODE <chr> "9134", "107941", "107905", "107965", "107929", "1079…
#> $ UNIT_UNITE <chr> "MG/L", "UG/L", "UG/L", "UG/L", "UG/L", "UG/L", "UG/L…
#> $ VARIABLE <chr> "ALKALINITY TOTAL CACO3", "ALUMINUM DISSOLVED", "ALUM…
#> $ VARIABLE_FR <chr> "ALCALINITÉ TOTALE CACO3", "ALUMINIUM DISSOUS", "ALUM…
#> $ STATUS_STATUT <chr> "P", "P", "P", "P", "P", "P", "P", "P", "P", "P", "P"…
Under development, but ready for use and testing.
To report bugs/issues/feature requests, please file an issue.
If you would like to contribute to the package, please see our CONTRIBUTING guidelines.
Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms.
Copyright 2018 Province of British Columbia
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
This repository is maintained by Environmental Reporting BC. Click here for a complete list of our repositories on GitHub.