Skip to content

Ishan-phys/Diffusion-SDE

Repository files navigation

Diffusion SDE - A score-based generative modelling with SDEs package

PyPI version License Release Version

Synthesize new images using the score-based generative models.

Installation

Currently, diffusion_sde supports release of Python 3.7 onwards.

To install the current release:

$ pip install -U diffusion_sde

Getting Started

Start by instantiating a dataset class with a path where the custom dataset is located

from diffusion_sde import datasets

# Specify the path of the custom dataset in the dataset class
ds = datasets(path_to_dataset)

Then, instantiate the diffSDE class to train the model and generate samples and pass the dataset using .set_loaders() method

from diffusion_sde import diffSDE

# Instantiate the diffSDE class
cls_diff = diffSDE()

# Set the dataloaders by passing the dataset instantiation as above
cls_diff.set_loaders(dataset=ds)

Begin the model training using the .train() method and select the desired number of epochs for training.

# Train the model
cls_diff.train(n_iters)

Generate the samples from the trained model with the .generate_samples() method and specify the desired number of steps for the sampler. We suggest setting the value of n_steps in the range of $\sim1500$-$2000$ steps to produce high-quality samples

# Generate samples from the trained model
cls_diff.generate_samples(n_steps)

noise to horse

Pretrained model can be loaded to generate new samples on Google Colab Open In Colab

About

Python package for generative modelling via SDEs

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages