A Toolkit for a series of Young projects, these modules are very practical, basic, simple and easy to use, so you can import this package wherever you need to use it.
from yoolkit.some_module import *
See Full Documentation for more details.
This module is a encapsulation of the client side of visdom, note that the visdom server API adheres to the Plotly convention of data and layout objects.
If you have not host a server of the visdom for yourself, please follow the instructions below.
export VISDOM_USERNAME="Jason"
export VISDOM_PASSWORD="123456"
export VISDOM_COOKIE="Guest_Visdom_Cookie"
function start_visdom {
VISDOM_USE_ENV_CREDENTIALS=1 visdom -port 6789 -enable_login -force_new_cookie;
}
export -f start_visdom
nohup bash -c start_visdom > visdom.log 2>&1 &
or you can download the start and stop scripts for convenience.
- Setup visualizing client for the server you host (assume your host ip is 127.0.0.1):
from yoolkit.visualizing import setup_visualizer
visualizer = setup_visualizer(
'Demo',
server='127.0.0.1',
port=6789,
username="Jason",
password="123456",
logging_path="demo.log",
offline=False,
overwrite=True
)
- Open connection:
visualizer.open()
- Draw! Your paintings can be found at http://127.0.0.1:6789.
import numpy
heat = numpy.arange(25).reshape((5,5))
visualizer.visualize(
'heatmap',
'demo_heatmap_5_5',
'Demo 5*5 matrix heatmap',
X=heat,
opts={
'colormap': 'Viridis',
}
)
In method visualizer.visualize()
, No.1 argument visualize_type
is one of a methods of visdom like line
, heatmap
, mesh
, etc., No.2 and No.3 arugment is visualize_name
and visualize_title
, all other keyword arguments is determined by visualize_type
(refer to visdom for more detailed usage documentation).
- Close connection:
visualizer.close()
After you close the connection between client and server, the server will remove the paintings that you have drawn.
Don't worry about that, all the paintings are saved in the logging file demo.log
which is defined in step 1.
- Replay a logging file:
visualizer.replay_log('some_other.log')
Three different installation methods are shown bellow:
- Install
YoungToolkit
oryoungtoolkit
from PyPI:
pip install YoungToolkit
or
pip install youngtoolkit
- Install
YoungToolkit
from sources:
git clone https://github.com/Jason-Young-AI/YoungToolkit.git
cd YoungToolkit
python setup.py install
- Develop
YoungToolkit
locally:
git clone https://github.com/Jason-Young-AI/YoungToolkit.git
cd YoungToolkit
python setup.py build develop
Append [nv-io]
to the package name YoungToolkit
durning the installation, like:
pip install YoungToolkit[nv-io]
Append [nv-track]
to the package name YoungToolkit
durning the installation.
pip install YoungToolkit[nv-track]
NOTE: I refer to project(Oldpan/Pytorch-Memory-Utils) to implement this part yoolkit.tracker
Append [full]
to the package name YoungToolkit
durning the installation.
pip install YoungToolkit[full]
NOTATION : If you are using zsh
as your shell environment, please escape the square brackets or quote the argument like pip install 'YoungToolkit[xxx]'
. (Here is a more detailed explanation)