Skip to content

Commit

Permalink
Create neural_network_optimizer.py
Browse files Browse the repository at this point in the history
  • Loading branch information
KOSASIH authored Jul 14, 2024
1 parent c425061 commit 7a70a9a
Showing 1 changed file with 52 additions and 0 deletions.
52 changes: 52 additions & 0 deletions aurora_axiom_ui/src/neural_network_optimizer.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,52 @@
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader

class NeuralNetworkOptimizer(nn.Module):
def __init__(self):
super(NeuralNetworkOptimizer, self).__init__()
self.fc1 = nn.Linear(784, 256)
self.fc2 = nn.Linear(256, 128)
self.fc3 = nn.Linear(128, 10)

def forward(self, x):
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x

class CustomDataset(Dataset):
def __init__(self, data, labels):
self.data = data
self.labels = labels

def __len__(self):
return len(self.data)

def __getitem__(self, idx):
return self.data[idx], self.labels[idx]

def train(model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = nn.CrossEntropyLoss()(output, target)
loss.backward()
optimizer.step()
if batch_idx % 100 == 0:
print(f'Epoch {epoch}, Batch {batch_idx}, Loss: {loss.item()}')

def main():
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = NeuralNetworkOptimizer()
optimizer = optim.Adam(model.parameters(), lr=0.001)
dataset = CustomDataset(data, labels)
train_loader = DataLoader(dataset, batch_size=32, shuffle=True)
for epoch in range(10):
train(model, device, train_loader, optimizer, epoch)

if __name__ == '__main__':
main()

0 comments on commit 7a70a9a

Please sign in to comment.