Skip to content

Commit

Permalink
Create ai_core.py
Browse files Browse the repository at this point in the history
  • Loading branch information
KOSASIH authored Jul 15, 2024
1 parent 26e305f commit a216ff9
Showing 1 changed file with 74 additions and 0 deletions.
74 changes: 74 additions & 0 deletions ai_core/ai_core.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,74 @@
import numpy as np
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Dense, LSTM

class AICore:
def __init__(self, num_inputs, num_outputs, hidden_layers):
self.num_inputs = num_inputs
self.num_outputs = num_outputs
self.hidden_layers = hidden_layers

def create_neural_network(self):
"""
Create a neural network using Keras.
Returns:
Model: The created neural network.
"""
inputs = Input(shape=(self.num_inputs,))
x = Dense(self.hidden_layers[0], activation="relu")(inputs)
for i in range(1, len(self.hidden_layers)):
x = Dense(self.hidden_layers[i], activation="relu")(x)
outputs = Dense(self.num_outputs, activation="softmax")(x)
model = Model(inputs=inputs, outputs=outputs)
return model

def train_neural_network(self, model, X_train, y_train, X_test, y_test):
"""
Train a neural network using Keras.
Args:
model (Model): The neural network to train.
X_train (numpy array): The training input data.
y_train (numpy array): The training output data.
X_test (numpy array): The testing input data.
y_test (numpy array): The testing output data.
"""
model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
model.fit(X_train, y_train, epochs=100, batch_size=128, validation_data=(X_test, y_test))

def use_neural_network(self, model, input_data):
"""
Use a trained neural network to make predictions.
Args:
model (Model): The trained neural network.
input_data (numpy array): The input data to make predictions on.
Returns:
numpy array: The predicted output data.
"""
predictions = model.predict(input_data)
return predictions

def optimize_neural_network(self, model, X_train, y_train, X_test, y_test):
"""
Optimize a neural network using a genetic algorithm.
Args:
model (Model): The neural network to optimize.
X_train (numpy array): The training input data.
y_train (numpy array): The training output data.
X_test (numpy array): The testing input data.
y_test (numpy array): The testing output data.
"""
from scipy.optimize import differential_evolution
def objective_function(params):
model.set_weights(params)
loss = model.evaluate(X_test, y_test)
return loss
bounds = [(0, 1) for _ in range(model.count_params())]
result = differential_evolution(objective_function, bounds)
optimized_weights = result.x
model.set_weights(optimized_weights)
return model

0 comments on commit a216ff9

Please sign in to comment.