Skip to content

Commit

Permalink
Merge branch 'main' into issue_#635_coordinate_implementation
Browse files Browse the repository at this point in the history
  • Loading branch information
caioolivv committed Oct 4, 2024
2 parents 2636448 + 7d90ee1 commit 2097dc5
Show file tree
Hide file tree
Showing 15 changed files with 242 additions and 44 deletions.
11 changes: 11 additions & 0 deletions INSTALL.md
Original file line number Diff line number Diff line change
Expand Up @@ -64,6 +64,17 @@ Now, you can install CLMM and its dependencies as
python setup.py install # build from source
```

### Local environment for CLMM

Alternatively, you can create a new local environment by running

```bash
conda env create -f environment.yml
conda activate clmm
```

You can now install CLMM in a local and stable environment with the usual procedure.

## Access to the proper environment on cori.nersc.gov <a name="access_to_the_proper_environment_on_cori"></a>

If you have access to NERSC, this will likely be the easiest to make sure you have the appropriate environment. After logging into cori.nersc.gov, you will need to execute the following. We recommend executing line-by-line to avoid errors:
Expand Down
2 changes: 1 addition & 1 deletion clmm/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,4 +26,4 @@
)
from . import support

__version__ = "1.12.5"
__version__ = "1.13.2"
19 changes: 14 additions & 5 deletions clmm/clusterensemble.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@

from .gcdata import GCData
from .dataops import make_stacked_radial_profile
from .utils import DiffArray


class ClusterEnsemble:
Expand All @@ -27,7 +28,7 @@ class ClusterEnsemble:
* "tan_sc" : tangential component computed with sample covariance
* "cross_sc" : cross component computed with sample covariance
* "tan_jk" : tangential component computed with bootstrap
* "tan_bs" : tangential component computed with bootstrap
* "cross_bs" : cross component computed with bootstrap
* "tan_jk" : tangential component computed with jackknife
* "cross_jk" : cross component computed with jackknife
Expand All @@ -46,7 +47,7 @@ def __init__(self, unique_id, gc_list=None, **kwargs):
else:
raise TypeError(f"unique_id incorrect type: {type(unique_id)}")
self.unique_id = unique_id
self.data = GCData(meta={"bin_units": None})
self.data = GCData(meta={"bin_units": None, "radius_min": None, "radius_max": None})
if gc_list is not None:
self._add_values(gc_list, **kwargs)
self.stacked_data = None
Expand Down Expand Up @@ -198,6 +199,9 @@ def add_individual_radial_profile(
"""
cl_bin_units = profile_table.meta.get("bin_units", None)
self.data.update_info_ext_valid("bin_units", self.data, cl_bin_units, overwrite=False)
for col in ("radius_min", "radius_max"):
value = DiffArray(profile_table[col])
self.data.update_info_ext_valid(col, self.data, value, overwrite=False)

cl_cosmo = profile_table.meta.get("cosmo", None)
self.data.update_info_ext_valid("cosmo", self.data, cl_cosmo, overwrite=False)
Expand Down Expand Up @@ -248,9 +252,14 @@ def make_stacked_radial_profile(self, tan_component="gt", cross_component="gx",
[self.data[tan_component], self.data[cross_component]],
)
self.stacked_data = GCData(
[radius, *components],
meta=self.data.meta,
names=("radius", tan_component, cross_component),
[
self.data.meta["radius_min"].value,
self.data.meta["radius_max"].value,
radius,
*components,
],
meta={k: v for k, v in self.data.meta.items() if k not in ("radius_min", "radius_max")},
names=("radius_min", "radius_max", "radius", tan_component, cross_component),
)

def compute_sample_covariance(self, tan_component="gt", cross_component="gx"):
Expand Down
10 changes: 2 additions & 8 deletions clmm/dataops/__init__.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,6 @@
"""Functions to compute polar/azimuthal averages in radial bins"""

"""Data operation for polar/azimuthal averages in radial bins and weights"""
import warnings
import numpy as np
import scipy
from astropy.coordinates import SkyCoord
from astropy import units as u
from ..gcdata import GCData
Expand All @@ -17,11 +15,7 @@
_validate_is_deltasigma_sigma_c,
_validate_coordinate_system,
)
from ..redshift import (
_integ_pzfuncs,
compute_for_good_redshifts,
)
from ..theory import compute_critical_surface_density_eff
from ..redshift import _integ_pzfuncs


def compute_tangential_and_cross_components(
Expand Down
2 changes: 1 addition & 1 deletion clmm/gcdata.py
Original file line number Diff line number Diff line change
Expand Up @@ -167,7 +167,7 @@ def update_info_ext_valid(self, key, gcdata, ext_value, overwrite=False):
key: str
Name of key to compare and update.
gcdata: GCData
Table to check if same cosmology.
Table to check if same cosmology and ensemble bins.
ext_value:
Value to be compared to.
overwrite: bool
Expand Down
1 change: 1 addition & 0 deletions clmm/utils/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,6 +41,7 @@
_validate_dec,
_validate_is_deltasigma_sigma_c,
_validate_coordinate_system,
DiffArray,
)

from .units import (
Expand Down
34 changes: 34 additions & 0 deletions clmm/utils/validation.py
Original file line number Diff line number Diff line change
Expand Up @@ -240,3 +240,37 @@ def _validate_coordinate_system(loc, argname):
validate_argument(loc, argname, str)
if loc[argname] not in ["celestial", "euclidean"]:
raise ValueError(f"{argname} must be 'celestial' or 'euclidean'.")

class DiffArray:
"""Array where arr1==arr2 is actually all(arr1==arr)"""

def __init__(self, array):
self.value = np.array(array)

def __eq__(self, other):
# pylint: disable=unidiomatic-typecheck
if type(other) != type(self):
return False
if self.value.size != other.value.size:
return False
return (self.value == other.value).all()

def __repr__(self):
out = str(self.value)
if self.value.size > 4:
out = self._get_lim_str(out) + " ... " + self._get_lim_str(out[::-1])[::-1]
return out

def _get_lim_str(self, out):
# pylint: disable=undefined-loop-variable
# get count starting point
for init_index, char in enumerate(out):
if all(char != _char for _char in "[]() "):
break
# get str
sep = 0
for i, char in enumerate(out[init_index + 1 :]):
sep += int(char == " " and out[i + init_index] != " ")
if sep == 2:
break
return out[: i + init_index + 1]
20 changes: 20 additions & 0 deletions environment.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
# CLMM Conda environment
name: clmm
channels:
- conda-forge
- defaults
dependencies:
- python==3.10.2
- pip>=21.0
- jupyter>=1.0
- numpy==1.25.2
- scipy==1.11.2
- astropy==5.3.2
- healpy == 1.16.5
- matplotlib==3.7.2
- gsl==2.7
- cmake==3.30.0
- pyccl==3.0
- numcosmo==0.18.2
- pytest=7.4.0
- sphinx==7.2.4
49 changes: 48 additions & 1 deletion examples/demo_mock_ensemble.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -320,6 +320,43 @@
},
{
"cell_type": "markdown",
"id": "84bd786f",
"metadata": {},
"source": [
"The individual cluster data and profiles are stored at the `.data` table of the `ClusterEnsemble`:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "864f3acb",
"metadata": {},
"outputs": [],
"source": [
"clusterensemble.data[:3]"
]
},
{
"cell_type": "markdown",
"id": "6ea533b0",
"metadata": {},
"source": [
"The edges of the radial bins, their units, and the cosmology are stored on the metadata of this table:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "39723fb1",
"metadata": {},
"outputs": [],
"source": [
"clusterensemble.data.meta"
]
},
{
"cell_type": "markdown",
"id": "99e3fe18",
"metadata": {},
"source": [
"## Stacked profile of the cluster ensemble\n",
Expand All @@ -335,6 +372,16 @@
"clusterensemble.make_stacked_radial_profile(tan_component=\"DS_t\", cross_component=\"DS_x\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "98b9fa63",
"metadata": {},
"outputs": [],
"source": [
"clusterensemble.stacked_data"
]
},
{
"cell_type": "markdown",
"metadata": {},
Expand Down Expand Up @@ -601,7 +648,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.9"
"version": "3.10.8"
}
},
"nbformat": 4,
Expand Down
52 changes: 49 additions & 3 deletions examples/demo_mock_ensemble_realistic.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -175,7 +175,7 @@
"source": [
"Ncm.cfg_init()\n",
"# cosmo_nc = Nc.HICosmoDEXcdm()\n",
"cosmo_nc = Nc.HICosmo.new_from_name(Nc.HICosmo, \"NcHICosmoDECpl{'massnu-length':<1>}\")\n",
"cosmo_nc = Nc.HICosmoDECpl(massnu_length=1)\n",
"cosmo_nc.omega_x2omega_k()\n",
"cosmo_nc.param_set_by_name(\"w0\", -1.0)\n",
"cosmo_nc.param_set_by_name(\"w1\", 0.0)\n",
Expand All @@ -201,7 +201,7 @@
"\n",
"dist = Nc.Distance.new(2.0)\n",
"dist.prepare_if_needed(cosmo_nc)\n",
"tf = Nc.TransferFunc.new_from_name(\"NcTransferFuncEH\")\n",
"tf = Nc.TransferFuncEH()\n",
"\n",
"psml = Nc.PowspecMLTransfer.new(tf)\n",
"psml.require_kmin(1.0e-6)\n",
Expand Down Expand Up @@ -903,6 +903,42 @@
" )"
]
},
{
"cell_type": "markdown",
"id": "b5e17ee0",
"metadata": {},
"source": [
"The individual cluster data and profiles are stored at the `.data` table of the `ClusterEnsemble`:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4a970edb",
"metadata": {},
"outputs": [],
"source": [
"clusterensemble.data[:3]"
]
},
{
"cell_type": "markdown",
"id": "7320e899",
"metadata": {},
"source": [
"The edges of the radial bins, their units, and the cosmology are stored on the metadata of this table:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f9ea8436",
"metadata": {},
"outputs": [],
"source": [
"clusterensemble.data.meta"
]
},
{
"cell_type": "markdown",
"id": "9091de7c",
Expand All @@ -922,6 +958,16 @@
"clusterensemble.make_stacked_radial_profile(tan_component=\"DS_t\", cross_component=\"DS_x\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e4125570",
"metadata": {},
"outputs": [],
"source": [
"clusterensemble.stacked_data"
]
},
{
"cell_type": "markdown",
"id": "771c1382",
Expand Down Expand Up @@ -1193,7 +1239,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.0"
"version": "3.11.9"
}
},
"nbformat": 4,
Expand Down
2 changes: 1 addition & 1 deletion pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@ line-length = 100

[tool.pylint]
max-line-length = 100
disable = ["R0913"]
disable = ["R0913", "R0917"]
good-names = ["ra", "z", "z1", "z2", "a", "a1", "a2",
"gt", "gx", "mu", "da", "i",
"H0", "Omega_b0", "Omega_dm0", "Omega_k0",
Expand Down
7 changes: 7 additions & 0 deletions tests/test_dataops.py
Original file line number Diff line number Diff line change
Expand Up @@ -145,6 +145,13 @@ def test_compute_lensing_angles_flatsky():
ra_l, dec_l, ra_s, dec_s, coordinate_system="celestial"
)

assert_allclose(
da._compute_lensing_angles_flatsky(-180, dec_l, np.array([180.1, 179.7]), dec_s),
[[0.0012916551296819666, 0.003424250083245557], [-2.570568636904587, 0.31079754672944354]],
TOLERANCE["rtol"],
err_msg="Failure when ra_l and ra_s are the same but one is defined negative",
)

assert_allclose(
thetas_celestial,
thetas_euclidean,
Expand Down
8 changes: 6 additions & 2 deletions tests/test_mockdata.py
Original file line number Diff line number Diff line change
Expand Up @@ -264,13 +264,17 @@ def test_shapenoise():

# Verify that the shape noise is Gaussian around 0 (for the very small shear here)
sigma = 0.25
data = mock.generate_galaxy_catalog(10**12.0, 0.3, 4, cosmo, 0.8, ngals=50000, shapenoise=sigma)
data = mock.generate_galaxy_catalog(
10**12.0, 0.3, 4, cosmo, 0.8, ngals=50000, shapenoise=sigma
)
# Check that there are no galaxies with |e|>1
assert_equal(np.count_nonzero((data["e1"] > 1) | (data["e1"] < -1)), 0)
assert_equal(np.count_nonzero((data["e2"] > 1) | (data["e2"] < -1)), 0)
# Check that shape noise is Guassian with correct std dev
bins = np.arange(-1, 1.1, 0.1)
gauss = 5000 * np.exp(-0.5 * (bins[:-1] + 0.05) ** 2 / sigma**2) / (sigma * np.sqrt(2 * np.pi))
gauss = (
5000 * np.exp(-0.5 * (bins[:-1] + 0.05) ** 2 / sigma**2) / (sigma * np.sqrt(2 * np.pi))
)
assert_allclose(np.histogram(data["e1"], bins=bins)[0], gauss, atol=50, rtol=0.05)
assert_allclose(np.histogram(data["e2"], bins=bins)[0], gauss, atol=50, rtol=0.05)

Expand Down
Loading

0 comments on commit 2097dc5

Please sign in to comment.