This is the official code for the [GCD]. The method is accepted by the GRSL in 2025.
- Linux
- Python 3.7 (Python 2 is not supported)
- PyTorch 1.5 or higher
- CUDA 10.1 or higher
- NCCL 2
- GCC(G++) 5.4 or higher
- mmcv-nwd==1.3.5
- cocoapi-aitod==12.0.3
a. Create a conda virtual environment and activate it.
conda create -n gcd python=3.7 -y
conda activate gcd
b. Install PyTorch stable or nightly and torchvision following the official instructions, e.g.,
pip install torch==1.5.0+cu101 torchvision==0.6.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html
c. Install MMCV-NWD
git clone https://github.com/jwwangchn/mmcv-nwd.git
cd mmcv-nwd
MMCV_WITH_OPS=1 pip install -e . # package mmcv-full will be installed after this step
cd ../
d. Install COCOAPI-AITOD for Evaluating on AI-TOD dataset
pip install "git+https://github.com/jwwangchn/cocoapi-aitod.git#subdirectory=aitodpycocotools"
e. Install
# optional
pip install -r requirements.txt
python setup.py develop
# or "pip install -v -e ."
Please refer to AI-TOD for AI-TOD dataset.
The GCD's config files are in [configs/gcd].
Please see MMDetection full tutorials with existing dataset for beginners.
python tools/train.py configs/gcd/retinanet_r50_aitodv2_gcd_1x.py
The benchmark and trained models will be publicly available soon.
@ARTICLE{gcd2025,
author={Guan, Ziqian and Fu, Xieyi and Huang, Pengjun and Zhang, Hengyuan and Du, Hubin and Liu, Yongtao and Wang, Yinglin and Ma, Qang},
journal={IEEE Geoscience and Remote Sensing Letters},
title={Gaussian Combined Distance: A Generic Metric for Object Detection},
year={2025},
volume={22},
number={},
pages={1-5},
keywords={Measurement;Object detection;Feature extraction;Optimization;Detectors;Geoscience and remote sensing;Accuracy;Training;Sensitivity;Convergence;Generic metric;tiny object detection},
doi={10.1109/LGRS.2025.3531970}}