This repo utilizes imageaug library to augument the object detection dataset.
python \path_2_script\bb_aug.py -i=C:\Users\Desktop\new\in -o=C:\Users\Desktop\new\op -c train bus cycle car -iter=3
For help
python D:\path 2 where file is located\bb_aug.py -h
usage: bb_aug.py [-h] [-i IMG_PATH] [-o OP_IMG_PATH]
[-c CLASSES [CLASSES ...]] [--xml_path XML_PATH]
[--op_xml_path OP_XML_PATH] [-iter ITERATIONS]
optional arguments:
-h, --help show this help message and exit
-i IMG_PATH, --img_path IMG_PATH
path to read images.
-o OP_IMG_PATH, --op_img_path OP_IMG_PATH
path to write images.
-c CLASSES [CLASSES ...], --classes CLASSES [CLASSES ...]
a list containing names of all classes in dataset
--xml_path XML_PATH path to read xml files if None then same as img_path.
--op_xml_path OP_XML_PATH
path to write xml files if None then same as
op_img_path.
-iter ITERATIONS, --iterations ITERATIONS
Number of times to augment each image e.g. if input
dir has 2 images and iterations=4 then op dir will
have 8 images, default is 1.
============================================================
Images Found = 3
Annot. Found = 3
------------------------------------------------------------
Augmneted Files = 9
============================================================
Augumenting Dataset (iteration 1of3): 100%|████████████████████████████████████████████████████████████████████████████████| 3/3 [00:03<00:00, 1.00s/it]
Augumenting Dataset (iteration 2of3): 100%|████████████████████████████████████████████████████████████████████████████████| 3/3 [00:03<00:00, 1.23s/it]
Augumenting Dataset (iteration 3of3): 100%|████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.40it/s]
- imgaug
- matplot
- cv2
- xmltodict
- dicttoxml