-
Notifications
You must be signed in to change notification settings - Fork 91
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
First version of MATX sparse2dense conversion (dispatch to cuSPARSE) (#…
…856) * First version of MATX dense2sparse conversion (using dispatch to cuSPARSE)
- Loading branch information
Showing
7 changed files
with
446 additions
and
42 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,146 @@ | ||
//////////////////////////////////////////////////////////////////////////////// | ||
// BSD 3-Clause License | ||
// | ||
// Copyright (c) 2025, NVIDIA Corporation | ||
// All rights reserved. | ||
// | ||
// Redistribution and use in source and binary forms, with or without | ||
// modification, are permitted provided that the following conditions are met: | ||
// | ||
// 1. Redistributions of source code must retain the above copyright notice, this | ||
// list of conditions and the following disclaimer. | ||
// | ||
// 2. Redistributions in binary form must reproduce the above copyright notice, | ||
// this list of conditions and the following disclaimer in the documentation | ||
// and/or other materials provided with the distribution. | ||
// | ||
// 3. Neither the name of the copyright holder nor the names of its | ||
// contributors may be used to endorse or promote products derived from | ||
// this software without specific prior written permission. | ||
// | ||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | ||
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | ||
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE | ||
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR | ||
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER | ||
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, | ||
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | ||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||
///////////////////////////////////////////////////////////////////////////////// | ||
|
||
#pragma once | ||
|
||
#include "matx/core/type_utils.h" | ||
#include "matx/operators/base_operator.h" | ||
#include "matx/transforms/convert/sparse2dense_cusparse.h" | ||
|
||
namespace matx { | ||
namespace detail { | ||
|
||
template <typename OpA> | ||
class Sparse2DenseOp : public BaseOp<Sparse2DenseOp<OpA>> { | ||
private: | ||
typename detail::base_type_t<OpA> a_; | ||
|
||
static constexpr int out_rank = OpA::Rank(); | ||
cuda::std::array<index_t, out_rank> out_dims_; | ||
mutable detail::tensor_impl_t<typename OpA::value_type, out_rank> tmp_out_; | ||
mutable typename OpA::value_type *ptr = nullptr; | ||
|
||
public: | ||
using matxop = bool; | ||
using matx_transform_op = bool; | ||
using sparse2dense_xform_op = bool; | ||
using value_type = typename OpA::value_type; | ||
|
||
__MATX_INLINE__ Sparse2DenseOp(const OpA &a) : a_(a) { | ||
for (int r = 0; r < Rank(); r++) { | ||
out_dims_[r] = a_.Size(r); | ||
} | ||
} | ||
|
||
__MATX_INLINE__ std::string str() const { | ||
return "sparse2dense(" + get_type_str(a_) + ")"; | ||
} | ||
|
||
__MATX_HOST__ __MATX_INLINE__ auto Data() const noexcept { return ptr; } | ||
|
||
template <typename... Is> | ||
__MATX_INLINE__ __MATX_DEVICE__ __MATX_HOST__ decltype(auto) | ||
operator()(Is... indices) const { | ||
return tmp_out_(indices...); | ||
} | ||
|
||
static __MATX_INLINE__ constexpr __MATX_HOST__ __MATX_DEVICE__ int32_t | ||
Rank() { | ||
return remove_cvref_t<OpA>::Rank(); | ||
} | ||
|
||
constexpr __MATX_INLINE__ __MATX_HOST__ __MATX_DEVICE__ index_t | ||
Size(int dim) const { | ||
return out_dims_[dim]; | ||
} | ||
|
||
template <typename Out, typename Executor> | ||
void Exec([[maybe_unused]] Out &&out, [[maybe_unused]] Executor &&ex) const { | ||
if constexpr (is_sparse_tensor_v<OpA>) { | ||
auto ref = cuda::std::get<0>(out); | ||
using Rtype = decltype(ref); | ||
if constexpr (is_sparse_tensor_v<Rtype>) { | ||
MATX_THROW(matxNotSupported, | ||
"Cannot use sparse2dense for sparse output"); | ||
} else { | ||
sparse2dense_impl(ref, a_, ex); | ||
} | ||
} else { | ||
MATX_THROW(matxNotSupported, "Cannot use sparse2dense on dense input"); | ||
} | ||
} | ||
|
||
template <typename ShapeType, typename Executor> | ||
__MATX_INLINE__ void | ||
InnerPreRun([[maybe_unused]] ShapeType &&shape, | ||
[[maybe_unused]] Executor &&ex) const noexcept { | ||
static_assert(is_sparse_tensor_v<OpA>, | ||
"Cannot use sparse2dense on dense input"); | ||
} | ||
|
||
template <typename ShapeType, typename Executor> | ||
__MATX_INLINE__ void PreRun([[maybe_unused]] ShapeType &&shape, | ||
[[maybe_unused]] Executor &&ex) const noexcept { | ||
InnerPreRun(std::forward<ShapeType>(shape), std::forward<Executor>(ex)); | ||
detail::AllocateTempTensor(tmp_out_, std::forward<Executor>(ex), out_dims_, | ||
&ptr); | ||
Exec(cuda::std::make_tuple(tmp_out_), std::forward<Executor>(ex)); | ||
} | ||
|
||
template <typename ShapeType, typename Executor> | ||
__MATX_INLINE__ void PostRun([[maybe_unused]] ShapeType &&shape, | ||
[[maybe_unused]] Executor &&ex) const noexcept { | ||
static_assert(is_sparse_tensor_v<OpA>, | ||
"Cannot use sparse2dense on dense input"); | ||
matxFree(ptr); | ||
} | ||
}; | ||
|
||
} // end namespace detail | ||
|
||
/** | ||
* Convert a sparse tensor into a dense tensor. | ||
* | ||
* @tparam OpA | ||
* Data type of A tensor | ||
* | ||
* @param A | ||
* Sparse input tensor | ||
* | ||
* @return | ||
* Dense output tensor | ||
*/ | ||
template <typename OpA> __MATX_INLINE__ auto sparse2dense(const OpA &A) { | ||
return detail::Sparse2DenseOp(A); | ||
} | ||
|
||
} // end namespace matx |
Oops, something went wrong.