Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

First version of MATX sparse2dense conversion (dispatch to cuSPARSE) #856

Merged
merged 3 commits into from
Feb 4, 2025
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
25 changes: 17 additions & 8 deletions examples/sparse_tensor.cu
Original file line number Diff line number Diff line change
Expand Up @@ -90,24 +90,33 @@ int main([[maybe_unused]] int argc, [[maybe_unused]] char **argv)
//
// A very naive way to convert the sparse matrix back to a dense
// matrix. Note that one should **never** use the ()-operator in
// performance critical code, since sparse data structures do
// performance critical code, since sparse storage formats do
// not provide O(1) random access to their elements (compressed
// levels will use some form of search to determine if an element
// is present). Instead, conversions (and other operations) should
// use sparse operations that are tailored for the sparse data
// structure (such as scanning by row for CSR).
// use sparse operations that are tailored for the sparse storage
// format (such as scanning by row for CSR).
//
auto A = make_tensor<float>({4, 8});
auto A1 = make_tensor<float>({4, 8});
for (index_t i = 0; i < 4; i++) {
for (index_t j = 0; j < 8; j++) {
A(i, j) = Acoo(i, j);
A1(i, j) = Acoo(i, j);
}
}
print(A);
print(A1);

//
// SpMM is implemented on COO through cuSPARSE. This is the
// correct way of performing an efficient sparse operation.
// A direct sparse2dense conversion. This is the correct way of
// performing the conversion, since the underlying implementation
// knows how to properly manipulate the sparse storage format.
//
auto A2 = make_tensor<float>({4, 8});
(A2 = sparse2dense(Acoo)).run(exec);
print(A2);

//
// Perform a direct SpMM. This is also the correct way of performing
// an efficient sparse operation.
//
auto B = make_tensor<float, 2>({8, 4});
auto C = make_tensor<float>({4, 4});
Expand Down
18 changes: 18 additions & 0 deletions include/matx/core/type_utils.h
Original file line number Diff line number Diff line change
Expand Up @@ -38,6 +38,7 @@
#include <cublas_v2.h>
#include <cuda/std/complex>
#include <cuda/std/tuple>
#include <cusparse.h>
#include <type_traits>

#include "cuda_fp16.h"
Expand Down Expand Up @@ -1166,6 +1167,23 @@ template <typename T> constexpr cublasComputeType_t MatXTypeToCudaComputeType()

return CUBLAS_COMPUTE_32F;
}

template <typename T>
constexpr cusparseIndexType_t MatXTypeToCuSparseIndexType() {
if constexpr (std::is_same_v<T, uint16_t>) {
return CUSPARSE_INDEX_16U;
}
if constexpr (std::is_same_v<T, int32_t>) {
return CUSPARSE_INDEX_32I;
}
if constexpr (std::is_same_v<T, int64_t>) {
return CUSPARSE_INDEX_64I;
}
if constexpr (std::is_same_v<T, index_t>) {
return CUSPARSE_INDEX_64I;
}
}

} // end namespace detail

} // end namespace matx
1 change: 1 addition & 0 deletions include/matx/operators/operators.h
Original file line number Diff line number Diff line change
Expand Up @@ -99,6 +99,7 @@
#include "matx/operators/shift.h"
#include "matx/operators/sign.h"
#include "matx/operators/slice.h"
#include "matx/operators/sparse2dense.h"
#include "matx/operators/solve.h"
#include "matx/operators/sort.h"
#include "matx/operators/sph2cart.h"
Expand Down
146 changes: 146 additions & 0 deletions include/matx/operators/sparse2dense.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,146 @@
////////////////////////////////////////////////////////////////////////////////
// BSD 3-Clause License
//
// Copyright (c) 2025, NVIDIA Corporation
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
/////////////////////////////////////////////////////////////////////////////////

#pragma once

#include "matx/core/type_utils.h"
#include "matx/operators/base_operator.h"
#include "matx/transforms/convert/sparse2dense_cusparse.h"

namespace matx {
namespace detail {

template <typename OpA>
class Sparse2DenseOp : public BaseOp<Sparse2DenseOp<OpA>> {
private:
typename detail::base_type_t<OpA> a_;
aartbik marked this conversation as resolved.
Show resolved Hide resolved

static constexpr int out_rank = OpA::Rank();
cuda::std::array<index_t, out_rank> out_dims_;
mutable detail::tensor_impl_t<typename OpA::value_type, out_rank> tmp_out_;
mutable typename OpA::value_type *ptr = nullptr;

public:
using matxop = bool;
using matx_transform_op = bool;
using sparse2dense_xform_op = bool;
using value_type = typename OpA::value_type;

__MATX_INLINE__ Sparse2DenseOp(const OpA &a) : a_(a) {
for (int r = 0; r < Rank(); r++) {
out_dims_[r] = a_.Size(r);
}
}

__MATX_INLINE__ std::string str() const {
return "sparse2dense(" + get_type_str(a_) + ")";
}

__MATX_HOST__ __MATX_INLINE__ auto Data() const noexcept { return ptr; }

template <typename... Is>
__MATX_INLINE__ __MATX_DEVICE__ __MATX_HOST__ decltype(auto)
operator()(Is... indices) const {
return tmp_out_(indices...);
}

static __MATX_INLINE__ constexpr __MATX_HOST__ __MATX_DEVICE__ int32_t
Rank() {
return remove_cvref_t<OpA>::Rank();
}

constexpr __MATX_INLINE__ __MATX_HOST__ __MATX_DEVICE__ index_t
Size(int dim) const {
return out_dims_[dim];
}

template <typename Out, typename Executor>
void Exec([[maybe_unused]] Out &&out, [[maybe_unused]] Executor &&ex) const {
if constexpr (is_sparse_tensor_v<OpA>) {
auto ref = cuda::std::get<0>(out);
typedef decltype(ref) Rtype;
aartbik marked this conversation as resolved.
Show resolved Hide resolved
if constexpr (is_sparse_tensor_v<Rtype>) {
MATX_THROW(matxNotSupported,
"Cannot use sparse2dense for sparse output");
} else {
sparse2dense_impl(ref, a_, ex);
}
} else {
MATX_THROW(matxNotSupported, "Cannot use sparse2dense on dense input");
}
}

template <typename ShapeType, typename Executor>
__MATX_INLINE__ void
InnerPreRun([[maybe_unused]] ShapeType &&shape,
[[maybe_unused]] Executor &&ex) const noexcept {
static_assert(is_sparse_tensor_v<OpA>,
"Cannot use sparse2dense on dense input");
}

template <typename ShapeType, typename Executor>
__MATX_INLINE__ void PreRun([[maybe_unused]] ShapeType &&shape,
[[maybe_unused]] Executor &&ex) const noexcept {
InnerPreRun(std::forward<ShapeType>(shape), std::forward<Executor>(ex));
detail::AllocateTempTensor(tmp_out_, std::forward<Executor>(ex), out_dims_,
&ptr);
Exec(cuda::std::make_tuple(tmp_out_), std::forward<Executor>(ex));
}

template <typename ShapeType, typename Executor>
__MATX_INLINE__ void PostRun([[maybe_unused]] ShapeType &&shape,
[[maybe_unused]] Executor &&ex) const noexcept {
static_assert(is_sparse_tensor_v<OpA>,
"Cannot use sparse2dense on dense input");
matxFree(ptr);
}
};

} // end namespace detail

/**
* Convert a sparse tensor into a dense tensor.
*
* @tparam OpA
* Data type of A tensor
*
* @param A
* Sparse input tensor
*
* @return
* Dense output tensor
*/
template <typename OpA> __MATX_INLINE__ auto sparse2dense(const OpA &A) {
return detail::Sparse2DenseOp(A);
}

} // end namespace matx
Loading