Skip to content

Commit

Permalink
Merge branch 'main' into fp8_cuda_graphs
Browse files Browse the repository at this point in the history
  • Loading branch information
ksivaman committed Jan 20, 2024
2 parents e79660a + bacefdb commit 30045bb
Show file tree
Hide file tree
Showing 54 changed files with 2,275 additions and 1,113 deletions.
2 changes: 1 addition & 1 deletion .github/workflows/trigger-ci.yml
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ jobs:

# This job only runs for pull request comments
if: |
contains( 'ptrendx,ksivaman,schetlur-nv,timmoon10,zlsh80826,mingxu1067,cyanguwa,nzmora-nvidia,galagam,nouiz,denera,', format('{0},', github.actor)) &&
contains( 'ptrendx,ksivaman,schetlur-nv,timmoon10,zlsh80826,mingxu1067,cyanguwa,nzmora-nvidia,galagam,nouiz,denera,sudhakarsingh27,', format('{0},', github.actor)) &&
startsWith(github.event.comment.body, '/te-ci')
steps:
- name: Check if comment is issued by authorized person
Expand Down
2 changes: 1 addition & 1 deletion VERSION
Original file line number Diff line number Diff line change
@@ -1 +1 @@
1.3.0dev
1.4.0dev
2 changes: 1 addition & 1 deletion docs/examples/advanced_optimizations.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -199,7 +199,7 @@
"\n",
"</div>\n",
"\n",
"PyTorch's autograd functionality assumes that a model parameter and its corresponding gradient have the same data type. However, while low-precision data types like FP8 are sufficient for evaluating a neural network's forward and backward passes, the optimization step typically requires full FP32 precision to avoid signficant learning degradation. In addition, Tensor Cores on Hopper GPUs have the option to accumulate matrix products directly into FP32, resulting in better numerical accuracy and avoiding the need for a separate casting kernel. Thus, Transformer Engine provides an option to directly generate FP32 gradients for weight tensors. The FP32 gradients are not output to the parameter's `grad` tensor, but rather to a `main_grad` tensor that must be initialized before the backward pass."
"PyTorch's autograd functionality assumes that a model parameter and its corresponding gradient have the same data type. However, while low-precision data types like FP8 are sufficient for evaluating a neural network's forward and backward passes, the optimization step typically requires full FP32 precision to avoid significant learning degradation. In addition, Tensor Cores on Hopper GPUs have the option to accumulate matrix products directly into FP32, resulting in better numerical accuracy and avoiding the need for a separate casting kernel. Thus, Transformer Engine provides an option to directly generate FP32 gradients for weight tensors. The FP32 gradients are not output to the parameter's `grad` tensor, but rather to a `main_grad` tensor that must be initialized before the backward pass."
]
},
{
Expand Down
2 changes: 1 addition & 1 deletion docs/examples/quickstart.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@
"\n",
"## Overview\n",
"\n",
"Transformer Engine (TE) is a library for accelerating Transformer models on NVIDIA GPUs, providing better performance with lower memory utilization in both training and inference. It provides support for 8-bit floating point (FP8) precision on Hopper GPUs, implements a collection of highly optimized building blocks for popular Transformer architectures, and exposes an automatic-mixed-precision-like API that can be used seamlessy with your PyTorch code. It also includes a framework-agnostic C++ API that can be integrated with other deep learning libraries to enable FP8 support for Transformers.\n",
"Transformer Engine (TE) is a library for accelerating Transformer models on NVIDIA GPUs, providing better performance with lower memory utilization in both training and inference. It provides support for 8-bit floating point (FP8) precision on Hopper GPUs, implements a collection of highly optimized building blocks for popular Transformer architectures, and exposes an automatic-mixed-precision-like API that can be used seamlessly with your PyTorch code. It also includes a framework-agnostic C++ API that can be integrated with other deep learning libraries to enable FP8 support for Transformers.\n",
"\n",
"## Let's build a Transformer layer!\n",
"\n",
Expand Down
53 changes: 53 additions & 0 deletions examples/pytorch/fsdp/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,53 @@
# Copyright (c) 2022-2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# See LICENSE for license information.

# Basic Example for Using PyTorch Fully Sharded Data Parallel mode with Transformer Engine

```bash
# FSDP without deferred initialization:
# Duplicate modules initialized on each device. Load on device memory reduced only after
# torch.distributed.fsdp.FullyShardedDataParallel mode shards model parameters.
$ torchrun --standalone --nnodes=1 --nproc-per-node=$(nvidia-smi -L | wc -l) fsdp.py
# Sample output on 8xL40S:
# [GPU-0] WORLD_SIZE = 8
# [GPU-0] TransformerEngine Model:
# TransformerLayer(
# (self_attention): MultiheadAttention(
# (layernorm_qkv): LayerNormLinear()
# (core_attention): DotProductAttention(
# (flash_attention): FlashAttention()
# (fused_attention): FusedAttention()
# (unfused_attention): UnfusedDotProductAttention(
# (scale_mask_softmax): FusedScaleMaskSoftmax()
# (attention_dropout): Dropout(p=0.1, inplace=False)
# )
# )
# (proj): Linear()
# )
# (layernorm_mlp): LayerNormMLP()
# )
# [GPU-0] Pre-FSDP memory use = 83.935232MiB
# [GPU-0] Post-FSDP memory use = 10.491904MiB
# [GPU-0] Iter. 1
# [GPU-0] Iter. 2
# [GPU-0] Iter. 3
# [GPU-0] Training Time: 6.647654296875s
# [GPU-0] Avg. Iter. Time: 2.2158847656250003s
# [GPU-0] Peak memory use = 3000MiB

# FSDP with deferred initialization:
# Modules initialized with empty parameters via `device='meta'` option. Zero load on device
# memory until torch.distributed.fsdp.FullyShardedDataParallel mode triggers a reset on
# on already sharded model parameters.
$ torchrun --standalone --nnodes=1 --nproc-per-node=$(nvidia-smi -L | wc -l) fsdp.py --defer-init
# Sample output on 8xL40S:
# [GPU-0] WORLD_SIZE = 8
# ...
# [GPU-0] Pre-FSDP memory use = 0.0MiB
# [GPU-0] Post-FSDP memory use = 10.491904MiB
# ...
```

**NOTE:** This example has `fp8_autocast()` enabled by default. To run on GPUs without Fp8 support
(e.g.: A100), add the `--no-fp8` option to the commands shown above.
195 changes: 195 additions & 0 deletions examples/pytorch/fsdp/fsdp.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,195 @@
# Copyright (c) 2022-2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# See LICENSE for license information.

import os
import argparse
from functools import partial

import torch
import torch.distributed as dist
from torch import nn
from torch.distributed.fsdp import FullyShardedDataParallel, MixedPrecision
from torch.distributed.fsdp.wrap import always_wrap_policy, transformer_auto_wrap_policy

import transformer_engine.pytorch as te
from transformer_engine.common.recipe import Format, DelayedScaling

def lowercase(s):
return str(s).lower()

def torch_dtype(d):
typemap = {
'fp32' : torch.float32,
'float32' : torch.float32,
'fp16' : torch.float16,
'float16' : torch.float16,
'bf16' : torch.bfloat16,
'bfloat16' : torch.bfloat16
}
if lowercase(d) not in typemap.keys():
raise TypeError
return typemap[lowercase(d)]

te_layer_map = {
'linear': te.Linear,
'layernorm': te.LayerNorm,
'rmsnorm': te.RMSNorm,
'layernormlinear': te.LayerNormLinear,
'layernormmlp': te.LayerNormMLP,
'multiheadattention': te.MultiheadAttention,
'transformerlayer': te.TransformerLayer
}
def te_layer(l):
if lowercase(l) not in te_layer_map.keys():
raise TypeError
return te_layer_map[lowercase(l)]

def get_layer_args(args):
hidden_size = args.num_heads * args.head_dim
layer_args = (hidden_size, )
layer_kwargs = {
'params_dtype': args.dtype,
'device': 'meta' if args.defer_init else 'cuda'
}
if args.layer_type in [te.Linear, te.LayerNormLinear, te.LayerNormMLP]:
ffn_hidden_size = 3 * hidden_size if args.num_layers == 1 else hidden_size
layer_args += (ffn_hidden_size, )
layer_kwargs['bias'] = True
if args.layer_type == te.LayerNormMLP:
layer_kwargs['seq_length'] = args.seq_length
elif args.layer_type == te.MultiheadAttention:
layer_args += (args.num_heads, )
layer_kwargs['fuse_qkv_params'] = True
elif args.layer_type == te.TransformerLayer:
layer_args += (3 * hidden_size, args.num_heads)
layer_kwargs['fuse_qkv_params'] = True
layer_kwargs['seq_length'] = args.seq_length
return layer_args, layer_kwargs

def parse_fsdp_args():
parser = argparse.ArgumentParser(description="Run Transformer Engine modules with the " +
"torch.distributed.fsdp.FullyShardedDataParallel strategy.")
parser.add_argument("-t", "--layer-type", type=te_layer, default=te.TransformerLayer,
choices=list(te_layer_map.values()),
help="TE module type used to construct the test model.")
parser.add_argument("--no-fp8", action="store_true", default=False,
help="Disables the te.fp8_autocast() context.")
parser.add_argument('-i', "--num-iters", type=int, default=3,
help="Number of dummy 'training' iterations.")
parser.add_argument('-b', "--batch-size", type=int, default=32,
help="Input batch size.")
parser.add_argument('-s', "--seq-length", type=int, default=1048,
help="Input sequence length.")
parser.add_argument('-n', "--num-heads", type=int, default=16,
help="Number of attention heads.")
parser.add_argument('-d', "--head-dim", type=int, default=128,
help="Dimension of each attention head (number of KV channels).")
parser.add_argument('-l', "--num-layers", type=int, default=1,
help="Number of modules chained together with nn.Sequential.")
parser.add_argument("--seed", type=int, default=1234,
help="PyTorch RNG seed.")
parser.add_argument("--defer-init", action="store_true",
help="Defer module parameter initialization until after FSDP sharding.")
parser.add_argument('-v', "--verbose", action="store_true", default=False,
help="Print out information from all GPUs instead of only the root GPU-0.")
parser.add_argument("--dtype", type=torch_dtype, default=torch.bfloat16,
help="Data type for input tensor and Transformer Engine module parameters.")
return parser.parse_args()

def train(args):
local_rank = int(os.environ["LOCAL_RANK"])
world_size = int(os.environ["WORLD_SIZE"])

# Initialize torch.distributed global process group
dist.init_process_group(backend="nccl")
torch.cuda.set_device(local_rank)
if local_rank == 0:
print(f"[GPU-0] WORLD_SIZE = {world_size}\n\n", end='')
torch.manual_seed(args.seed)

# Construct a simple homogeneous model (only one layer type) with NO PARALLELISM
layer_args, layer_kwargs = get_layer_args(args)
if args.num_layers > 1:
te_layer_list = []
for i in range(args.num_layers):
if args.layer_type in [te.MultiheadAttention, te.TransformerLayer]:
layer_kwargs['layer_number'] = i+1
te_layer_list.append(args.layer_type(*layer_args, **layer_kwargs))
te_model = nn.Sequential(*te_layer_list)
else:
# Single layer model
te_model = args.layer_type(*layer_args, **layer_kwargs)
if local_rank == 0:
print(f"[GPU-0] TransformerEngine Model:\n{te_model}\n", end='')

# Print out allocated device memory before the model parameters are sharded by FSDP
pre_mem_use = torch.cuda.memory_allocated(device=f"cuda:{local_rank}") * 1e-6
if local_rank == 0 or args.verbose:
print(f"[GPU-{local_rank}] Pre-FSDP memory use = {pre_mem_use}MiB\n", end='')

# Wrap the model with FSDP
# NOTE: The TE model itself has no inherent parallelism. FSDP shards model parameters and
# controls all communication.
all_gpus = dist.new_group(backend='nccl')
fsdp_wrap_policy = always_wrap_policy
if args.layer_type == te.TransformerLayer:
# NOTE: FSDP causes illegal memory access without this special policy for Transformers
fsdp_wrap_policy = partial(transformer_auto_wrap_policy,
transformer_layer_cls={te.TransformerLayer})
te_model = FullyShardedDataParallel(te_model,
process_group=all_gpus,
use_orig_params=True,
mixed_precision=MixedPrecision(
param_dtype=args.dtype,
reduce_dtype=torch.float32,
),
sync_module_states=True,
auto_wrap_policy=fsdp_wrap_policy)

# Print out allocated device memory after the model parameters are sharded
post_mem_use = torch.cuda.memory_allocated(device=f"cuda:{local_rank}") * 1e-6
if local_rank == 0 or args.verbose:
print(f"[GPU-{local_rank}] Post-FSDP memory use = {post_mem_use}MiB\n", end='')

# Fp8 setup for TE
fp8_format = Format.HYBRID
fp8_recipe = DelayedScaling(fp8_format=fp8_format, amax_history_len=32, amax_compute_algo="max")

# Optimizer must be created after the model is wrapped in FSDP and the parameters are sharded
optim = torch.optim.Adam(te_model.parameters(), lr=0.0001)

# Start and time dummy "training" iterations
start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
torch.cuda.synchronize()
start.record()
for i in range(args.num_iters):
# Generate a random input batch
x = torch.rand(args.seq_length, args.batch_size,
args.num_heads*args.head_dim).to(dtype=args.dtype).cuda()
# fp8_autocast needs to be given the FSDP process group for amax reductions
with te.fp8_autocast(enabled=not args.no_fp8, fp8_recipe=fp8_recipe, fp8_group=all_gpus):
y = te_model(x)
loss = y.sum()
# calculate gradient and take training step outside the fp8_autocast context
loss.backward()
optim.step()
del x
if local_rank == 0:
print(f"[GPU-0] Iter. {i+1}\n", end='')
end.record()
torch.cuda.synchronize()

# Print out "training" time and peak memory use stats
train_time = start.elapsed_time(end)/1000.
max_memory_alloc = int(torch.cuda.max_memory_allocated(device=f"cuda:{local_rank}") * 1e-6)
if local_rank == 0 or args.verbose:
print(f"[GPU-{local_rank}] Training Time: {train_time}s\n" +
f"[GPU-{local_rank}] Avg. Iter. Time: {train_time /args.num_iters}s\n" +
f"[GPU-{local_rank}] Peak memory use = {max_memory_alloc}MiB\n\n", end='')


if __name__ == "__main__":
args = parse_fsdp_args()
train(args)
3 changes: 3 additions & 0 deletions qa/L0_jax_distributed_unittest/test.sh
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,9 @@

set -xe

# WAR(rewang) for the "Check failed: reduction_kind.has_value()"
export XLA_FLAGS="${XLA_FLAGS} --xla_gpu_enable_xla_runtime_executable=true"

: ${TE_PATH:=/opt/transformerengine}
pytest -Wignore -v $TE_PATH/tests/jax/test_distributed_*

2 changes: 2 additions & 0 deletions qa/L0_jax_unittest/test.sh
Original file line number Diff line number Diff line change
Expand Up @@ -14,5 +14,7 @@ pytest -Wignore -v $TE_PATH/examples/jax/mnist

# Make encoder tests to have run-to-run deterministic to have the stable CI results
export XLA_FLAGS="${XLA_FLAGS} --xla_gpu_deterministic_ops"
# WAR(rewang) for the "Check failed: reduction_kind.has_value()"
export XLA_FLAGS="${XLA_FLAGS} --xla_gpu_enable_xla_runtime_executable=true"
pytest -Wignore -v $TE_PATH/examples/jax/encoder --ignore=$TE_PATH/examples/jax/encoder/test_multiprocessing_encoder.py
pytest -Wignore -v $TE_PATH/examples/jax/encoder/test_multiprocessing_encoder.py
2 changes: 1 addition & 1 deletion tests/jax/test_custom_call_compute.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,7 +55,7 @@ def test_qdq(self):
scale = jnp.asarray(FP8_E4M3_MAX / amax, jnp.float32).reshape(1)
scale_inv = (1 / scale).reshape(1)

y = quantize(x, q_dtype=jnp.float8_e4m3fn, scale=scale)
y, _ = quantize(x, q_dtype=jnp.float8_e4m3fn, scale=scale)
z = dequantize(y, dq_dtype=jnp.float32, scale_inv=scale_inv)

assert_allclose(z, x, dtype=jnp.float8_e4m3fn)
Expand Down
Loading

0 comments on commit 30045bb

Please sign in to comment.