-
Notifications
You must be signed in to change notification settings - Fork 360
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
16 changed files
with
967 additions
and
200 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,224 @@ | ||
# Copyright (c) 2022-2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved. | ||
# | ||
# See LICENSE for license information. | ||
"""Unittest for Transformer layer in tensor parallel""" | ||
|
||
import unittest | ||
|
||
import paddle | ||
from paddle.distributed import fleet | ||
from paddle.distributed.fleet.layers.mpu import mp_ops | ||
|
||
from utils import assert_allclose, set_random_seed, register_sequence_parallel_allreduce_hooks | ||
import transformer_engine.paddle as te | ||
|
||
|
||
class TestAttentionTp(unittest.TestCase): | ||
"""Tests MultiHeadAttention layer with model parallel in BF16""" | ||
|
||
def setUp(self): | ||
self.set_attr() | ||
self.init_dist_env() | ||
paddle.set_default_dtype(self.global_dtype) | ||
|
||
def init_dist_env(self): | ||
"""Init Paddle Fleet environment""" | ||
strategy = fleet.DistributedStrategy() | ||
self.model_parallel_size = 2 | ||
strategy.hybrid_configs = { | ||
"dp_degree": 1, | ||
"mp_degree": self.model_parallel_size, | ||
"pp_degree": 1, | ||
} | ||
strategy.hybrid_configs["mp_configs"].need_broadcast_data = False | ||
fleet.init(is_collective=True, strategy=strategy) | ||
self.rank = fleet.worker_index() | ||
self.hcg = fleet.get_hybrid_communicate_group() | ||
self.tp_group = self.hcg.get_model_parallel_group() | ||
self.world_size = self.hcg.get_model_parallel_world_size() | ||
|
||
def set_attr(self): | ||
"""Set test configs""" | ||
self.batch_size = 16 | ||
self.hidden_size = 1024 | ||
self.num_heads = 16 | ||
self.q_seqlen = 128 | ||
self.kv_seqlen = 128 | ||
self.mask_type = 'padding' | ||
self.global_dtype = 'bfloat16' | ||
self.rtol = 5e-3 | ||
self.atol = 5e-3 | ||
self.eps = 1e-3 | ||
self.fp8 = False | ||
self.sequence_parallel = False | ||
|
||
def _train_one_step(self, layer, inp_list, optimizer, fp8_enabled, sequence_parallel=False): | ||
inp, mask = inp_list | ||
if sequence_parallel: | ||
split_size = inp.shape[0] // self.world_size | ||
input_parallel = inp[split_size * self.rank:split_size * (self.rank + 1), :] | ||
else: | ||
input_parallel = inp | ||
with te.fp8_autocast(enabled=fp8_enabled): | ||
out = layer(input_parallel, mask) | ||
if sequence_parallel: | ||
total_out = mp_ops._c_concat(out, group=self.tp_group) | ||
total_out = paddle.concat(paddle.split(total_out, self.world_size, axis=-1), axis=0) | ||
else: | ||
total_out = out | ||
loss = total_out.mean() | ||
loss.backward() | ||
optimizer.step() | ||
optimizer.clear_grad() | ||
return loss, total_out | ||
|
||
def test_parallel_layer(self): | ||
"""Tests parallel Transformer""" | ||
set_random_seed(1024) | ||
common_args = ( | ||
self.hidden_size, | ||
self.num_heads, | ||
) | ||
common_kwargs = { | ||
'layernorm_epsilon': self.eps, | ||
'attention_dropout': 0.0, | ||
'attn_mask_type': self.mask_type, | ||
'attention_type': 'self', | ||
"tp_group": self.tp_group, | ||
"input_layernorm": True, | ||
} | ||
|
||
layer_tp = te.MultiHeadAttention(*common_args, | ||
**common_kwargs, | ||
set_parallel_mode=True, | ||
sequence_parallel=self.sequence_parallel) | ||
layer_single = te.MultiHeadAttention(*common_args, **common_kwargs, set_parallel_mode=False) | ||
|
||
def _get_total_weight(local_weight, tp_group, axis, interleave=False): | ||
total_weight = [] | ||
partial_weight = local_weight.clone().detach() | ||
paddle.distributed.all_gather(total_weight, partial_weight, group=tp_group) | ||
if interleave: | ||
# Due to the interleaved qkv layout, need to concat on num_head | ||
# dimention for column parallel linear in MultiHeadAttention layer | ||
assert axis == 0 | ||
assert [3 * self.hidden_size // self.world_size, | ||
self.hidden_size] == partial_weight.shape | ||
local_num_head = self.num_heads // self.world_size | ||
for idx, _ in enumerate(total_weight): | ||
total_weight[idx] = total_weight[idx].reshape( | ||
[3, local_num_head, -1, self.hidden_size]) | ||
total_weight = paddle.concat(total_weight, axis=1).reshape([-1, self.hidden_size]) | ||
else: | ||
total_weight = paddle.concat(total_weight, axis=axis) | ||
return total_weight | ||
|
||
def _get_weight(obj, weight_names): | ||
for name in weight_names: | ||
obj = getattr(obj, name) | ||
return obj | ||
|
||
def copy_weight(layer_src, layer_dst, partition_mode, weight_names, interleave=False): | ||
weight_src = _get_weight(layer_src, weight_names) | ||
weight_dst = _get_weight(layer_dst, weight_names) | ||
if partition_mode is None: | ||
total_weight = weight_src | ||
elif partition_mode == 'column': | ||
total_weight = _get_total_weight(weight_src, | ||
tp_group=self.tp_group, | ||
axis=0, | ||
interleave=interleave) | ||
elif partition_mode == 'row': | ||
total_weight = _get_total_weight(weight_src, tp_group=self.tp_group, axis=1) | ||
else: | ||
raise ValueError(f"Partition Mode {partition_mode} is not supported.") | ||
assert weight_dst.shape == total_weight.shape, \ | ||
f"Shapes of src:{total_weight.shape} and dst:{weight_dst.shape} do not match." | ||
weight_dst.copy_(total_weight, True) | ||
|
||
copy_weight(layer_tp, layer_single, None, ['layernorm_qkv', 'ln_weight']) | ||
copy_weight(layer_tp, layer_single, 'column', ['layernorm_qkv', 'weight'], interleave=True) | ||
copy_weight(layer_tp, layer_single, 'row', ['proj', 'weight']) | ||
|
||
if self.sequence_parallel: | ||
register_sequence_parallel_allreduce_hooks(layer_tp, accumulation_steps=1) | ||
|
||
optimizer_tp = paddle.optimizer.SGD(learning_rate=0.01, parameters=layer_tp.parameters()) | ||
optimizer_single = paddle.optimizer.SGD(learning_rate=0.01, | ||
parameters=layer_single.parameters()) | ||
|
||
layer_tp = fleet.distributed_model(layer_tp) | ||
optimizer_tp = fleet.distributed_optimizer(optimizer_tp) | ||
|
||
for _ in range(5): | ||
inp = paddle.uniform([self.batch_size, self.q_seqlen, self.hidden_size], | ||
self.global_dtype) | ||
mask = paddle.zeros(shape=(self.batch_size, 1, self.q_seqlen, self.kv_seqlen), | ||
dtype='bool') | ||
loss_tp, out_tp = self._train_one_step(layer_tp, [inp, mask], optimizer_tp, self.fp8, | ||
self.sequence_parallel) | ||
loss_single, out_single = self._train_one_step(layer_single, [inp, mask], | ||
optimizer_single, self.fp8) | ||
assert_allclose(out_tp, out_single, rtol=self.rtol, atol=self.atol) | ||
assert_allclose(loss_tp, loss_single, rtol=self.rtol, atol=self.atol) | ||
|
||
|
||
class TestAttentionTpFp8(TestAttentionTp): | ||
"""Tests MultiHeadAttention layer with model parallel in FP8""" | ||
|
||
def set_attr(self): | ||
"""Set test configs""" | ||
self.batch_size = 16 | ||
self.hidden_size = 1024 | ||
self.num_heads = 16 | ||
self.q_seqlen = 128 | ||
self.kv_seqlen = 128 | ||
self.mask_type = 'padding' | ||
self.global_dtype = 'bfloat16' | ||
self.rtol = 5e-2 | ||
self.atol = 5e-2 | ||
self.eps = 1e-3 | ||
self.fp8 = True | ||
self.sequence_parallel = False | ||
|
||
|
||
class TestAttentionSp(TestAttentionTp): | ||
"""Tests MultiHeadAttention layer with sequence parallel in BF16""" | ||
|
||
def set_attr(self): | ||
"""Set test configs""" | ||
self.batch_size = 16 | ||
self.hidden_size = 1024 | ||
self.num_heads = 16 | ||
self.q_seqlen = 128 | ||
self.kv_seqlen = 128 | ||
self.mask_type = 'padding' | ||
self.global_dtype = 'bfloat16' | ||
self.rtol = 5e-3 | ||
self.atol = 5e-3 | ||
self.eps = 1e-3 | ||
self.fp8 = False | ||
self.sequence_parallel = True | ||
|
||
|
||
class TestAttentionSpFp8(TestAttentionTp): | ||
"""Tests MultiHeadAttention layer with sequence parallel in FP8""" | ||
|
||
def set_attr(self): | ||
"""Set test configs""" | ||
self.batch_size = 16 | ||
self.hidden_size = 1024 | ||
self.num_heads = 16 | ||
self.q_seqlen = 128 | ||
self.kv_seqlen = 128 | ||
self.mask_type = 'padding' | ||
self.global_dtype = 'bfloat16' | ||
self.rtol = 5e-2 | ||
self.atol = 1e-1 | ||
self.eps = 1e-3 | ||
self.fp8 = True | ||
self.sequence_parallel = True | ||
|
||
|
||
if __name__ == '__main__': | ||
unittest.main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.