-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #8 from PondiB/dev
poc schemas for ml/dl
- Loading branch information
Showing
10 changed files
with
1,009 additions
and
198 deletions.
There are no files selected for viewing
This file was deleted.
Oops, something went wrong.
This file was deleted.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,128 @@ | ||
{ | ||
"id": "ml_lighttae", | ||
"summary": "Initialize a Lightweight Temporal Self-Attention Encoder (LTAE) model", | ||
"description": "Creates and configures a Lightweight Temporal Self-Attention Encoder (LTAE) model. LTAE is designed for efficient modeling of temporal dependencies in sequential data using self-attention mechanisms. Parameters such as optimizer, learning rate, and learning rate decay schedule can be specified.", | ||
"categories": [ | ||
"machine learning" | ||
], | ||
"experimental": true, | ||
"parameters": [ | ||
{ | ||
"name": "epochs", | ||
"description": "The number of training epochs. Defaults to 150.", | ||
"optional": true, | ||
"default": 150, | ||
"schema": { | ||
"type": "integer", | ||
"minimum": 1 | ||
} | ||
}, | ||
{ | ||
"name": "batch_size", | ||
"description": "The size of batches for training. Defaults to 128.", | ||
"optional": true, | ||
"default": 128, | ||
"schema": { | ||
"type": "integer", | ||
"minimum": 1 | ||
} | ||
}, | ||
{ | ||
"name": "optimizer", | ||
"description": "The optimizer to use for training. Defaults to 'adam'. Supported values include 'adam', 'adabound', 'adabelief', 'madagrad', 'nadam', 'qhadam', 'radam', 'swats', and 'yogi'.", | ||
"optional": true, | ||
"default": "adam", | ||
"schema": { | ||
"type": "string", | ||
"enum": [ | ||
"adam", | ||
"adabound", | ||
"adabelief", | ||
"madagrad", | ||
"nadam", | ||
"qhadam", | ||
"radam", | ||
"swats", | ||
"yogi" | ||
] | ||
} | ||
}, | ||
{ | ||
"name": "learning_rate", | ||
"description": "The initial learning rate for training. Defaults to 0.0005.", | ||
"optional": true, | ||
"default": 0.0005, | ||
"schema": { | ||
"type": "number", | ||
"minimum": 0 | ||
} | ||
}, | ||
{ | ||
"name": "epsilon", | ||
"description": "The epsilon value for numerical stability in optimizers. Defaults to 1e-8.", | ||
"optional": true, | ||
"default": 0.00000001, | ||
"schema": { | ||
"type": "number", | ||
"minimum": 0 | ||
} | ||
}, | ||
{ | ||
"name": "weight_decay", | ||
"description": "The weight decay (L2 penalty) value for regularization. Defaults to 0.0007.", | ||
"optional": true, | ||
"default": 0.0007, | ||
"schema": { | ||
"type": "number", | ||
"minimum": 0 | ||
} | ||
}, | ||
{ | ||
"name": "lr_decay_epochs", | ||
"description": "The number of epochs after which the learning rate is decayed. Defaults to 50.", | ||
"optional": true, | ||
"default": 50, | ||
"schema": { | ||
"type": "integer", | ||
"minimum": 1 | ||
} | ||
}, | ||
{ | ||
"name": "lr_decay_rate", | ||
"description": "The rate at which the learning rate is decayed after the specified number of epochs. Defaults to 1.", | ||
"optional": true, | ||
"default": 1, | ||
"schema": { | ||
"type": "number", | ||
"minimum": 0, | ||
"maximum": 1 | ||
} | ||
}, | ||
{ | ||
"name": "random_state", | ||
"description": "A randomization seed to use for the random sampling in training. If not given or `null`, no seed is used and results may differ on subsequent use.", | ||
"optional": true, | ||
"default": null, | ||
"schema": { | ||
"type": [ | ||
"integer", | ||
"null" | ||
] | ||
} | ||
} | ||
], | ||
"returns": { | ||
"description": "An untrained Lightweight Temporal Self-Attention Encoder (LTAE) model instance.", | ||
"schema": { | ||
"type": "object", | ||
"subtype": "ml-model" | ||
} | ||
}, | ||
"links": [ | ||
{ | ||
"description": "Research paper describing the Lightweight Temporal Self-Attention Encoder (LTAE).", | ||
"citation": "V. S. F. Garnot and L. Landrieu, “Lightweight Temporal Self-attention for Classifying Satellite Images Time Series,” in Advanced Analytics and Learning on Temporal Data, 2020, pp. 171–181, doi: 10.1007/978-3-030-65742-0_12.", | ||
"url": "https://doi.org/10.1007/978-3-030-65742-0_12" | ||
} | ||
] | ||
} |
Oops, something went wrong.