Skip to content

Commit

Permalink
Merge pull request #8 from PondiB/dev
Browse files Browse the repository at this point in the history
poc schemas for ml/dl
  • Loading branch information
rolfsimoes authored Nov 26, 2024
2 parents 9f6c921 + 423781a commit 3285fae
Show file tree
Hide file tree
Showing 10 changed files with 1,009 additions and 198 deletions.
67 changes: 0 additions & 67 deletions inst/sits/processes/ml_class_random_forest.json

This file was deleted.

113 changes: 0 additions & 113 deletions inst/sits/processes/ml_fit_class_random_forest.json

This file was deleted.

128 changes: 128 additions & 0 deletions inst/sits/processes/ml_lighttae.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,128 @@
{
"id": "ml_lighttae",
"summary": "Initialize a Lightweight Temporal Self-Attention Encoder (LTAE) model",
"description": "Creates and configures a Lightweight Temporal Self-Attention Encoder (LTAE) model. LTAE is designed for efficient modeling of temporal dependencies in sequential data using self-attention mechanisms. Parameters such as optimizer, learning rate, and learning rate decay schedule can be specified.",
"categories": [
"machine learning"
],
"experimental": true,
"parameters": [
{
"name": "epochs",
"description": "The number of training epochs. Defaults to 150.",
"optional": true,
"default": 150,
"schema": {
"type": "integer",
"minimum": 1
}
},
{
"name": "batch_size",
"description": "The size of batches for training. Defaults to 128.",
"optional": true,
"default": 128,
"schema": {
"type": "integer",
"minimum": 1
}
},
{
"name": "optimizer",
"description": "The optimizer to use for training. Defaults to 'adam'. Supported values include 'adam', 'adabound', 'adabelief', 'madagrad', 'nadam', 'qhadam', 'radam', 'swats', and 'yogi'.",
"optional": true,
"default": "adam",
"schema": {
"type": "string",
"enum": [
"adam",
"adabound",
"adabelief",
"madagrad",
"nadam",
"qhadam",
"radam",
"swats",
"yogi"
]
}
},
{
"name": "learning_rate",
"description": "The initial learning rate for training. Defaults to 0.0005.",
"optional": true,
"default": 0.0005,
"schema": {
"type": "number",
"minimum": 0
}
},
{
"name": "epsilon",
"description": "The epsilon value for numerical stability in optimizers. Defaults to 1e-8.",
"optional": true,
"default": 0.00000001,
"schema": {
"type": "number",
"minimum": 0
}
},
{
"name": "weight_decay",
"description": "The weight decay (L2 penalty) value for regularization. Defaults to 0.0007.",
"optional": true,
"default": 0.0007,
"schema": {
"type": "number",
"minimum": 0
}
},
{
"name": "lr_decay_epochs",
"description": "The number of epochs after which the learning rate is decayed. Defaults to 50.",
"optional": true,
"default": 50,
"schema": {
"type": "integer",
"minimum": 1
}
},
{
"name": "lr_decay_rate",
"description": "The rate at which the learning rate is decayed after the specified number of epochs. Defaults to 1.",
"optional": true,
"default": 1,
"schema": {
"type": "number",
"minimum": 0,
"maximum": 1
}
},
{
"name": "random_state",
"description": "A randomization seed to use for the random sampling in training. If not given or `null`, no seed is used and results may differ on subsequent use.",
"optional": true,
"default": null,
"schema": {
"type": [
"integer",
"null"
]
}
}
],
"returns": {
"description": "An untrained Lightweight Temporal Self-Attention Encoder (LTAE) model instance.",
"schema": {
"type": "object",
"subtype": "ml-model"
}
},
"links": [
{
"description": "Research paper describing the Lightweight Temporal Self-Attention Encoder (LTAE).",
"citation": "V. S. F. Garnot and L. Landrieu, “Lightweight Temporal Self-attention for Classifying Satellite Images Time Series,” in Advanced Analytics and Learning on Temporal Data, 2020, pp. 171–181, doi: 10.1007/978-3-030-65742-0_12.",
"url": "https://doi.org/10.1007/978-3-030-65742-0_12"
}
]
}
Loading

0 comments on commit 3285fae

Please sign in to comment.