ReduceL1
,ReduceL2
- Fixed the logic to avoid a TensorFlow bug that caused the output tensor of
tf.norm()
to be(None, None, None, None)
. - TensorFlow bugs when converting a model that includes
ReduceL1
orReduceL2
.INFO: 20 / 819 INFO: onnx_op_type: ReduceL2 onnx_op_name: wa/model/stages/stages.0/blocks/blocks.0/mlp/grn/ReduceL2 INFO: input_name.1: wa/model/stages/stages.0/blocks/blocks.0/mlp/act/Mul_1_output_0 shape: [1, 56, 56, 512] dtype: float32 INFO: output_name.1: wa/model/stages/stages.0/blocks/blocks.0/mlp/grn/ReduceL2_output_0 shape: [1, 1, 1, 512] dtype: float32 INFO: tf_op_type: l2_normalize INFO: input.1.x: name: tf.math.multiply_8/Mul:0 shape: (1, 56, 56, 512) dtype: <dtype: 'float32'> INFO: input.2.axis: val: [1, 2] INFO: output.1.output: name: tf.compat.v1.norm_6/norm/transpose_1:0 shape: (None, None, None, None) dtype: <dtype: 'float32'>
- Fixed the logic to avoid a TensorFlow bug that caused the output tensor of
- convnextv2_base timm model conversion fails #742
What's Changed
- Fixed the logic to avoid a TensorFlow bug that caused the output tensor of
tf.norm()
to be(None, None, None, None)
by @PINTO0309 in #743
Full Changelog: 1.26.8...1.26.9