-
Notifications
You must be signed in to change notification settings - Fork 31
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
144 additions
and
125 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -9,5 +9,5 @@ finished: false | |
chapter: 12 | ||
--- | ||
- [[马尔可夫过程]] | ||
- 多步转移概率的确定 | ||
- [[多步转移概率的确定]] | ||
- 遍历性 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,76 @@ | ||
--- | ||
tags: | ||
- 数学 | ||
dlink: | ||
- "[[--概率论--]]" | ||
--- | ||
## 多步转移概率的确定 | ||
|
||
### 引言 | ||
在马尔可夫过程和其他随机过程的研究中,转移概率是一个重要的概念。多步转移概率(multi-step transition probability)描述了系统从一个状态转移到另一个状态所需的多个步骤的概率。在实际应用中,这种概率常用于系统建模、预测和决策分析等领域。 | ||
|
||
### 定义 | ||
设有马尔可夫链 $(X_n)$,其状态空间为 $S$,转移概率由 $P_{ij}$ 表示,即从状态 $i$ 转移到状态 $j$ 的概率。多步转移概率 $P^{(n)}_{ij}$ 定义为在 $n$ 步内,从状态 $i$ 到状态 $j$ 的转移概率: | ||
|
||
$$ | ||
P^{(n)}_{ij} = P(X_n = j | X_0 = i) | ||
$$ | ||
|
||
### 计算方法 | ||
多步转移概率可以通过单步转移概率的矩阵乘法来计算。设转移矩阵为 $P = [P_{ij}]$,则: | ||
|
||
$$ | ||
P^{(1)} = P | ||
$$ | ||
$$ | ||
P^{(2)} = P \cdot P | ||
$$ | ||
$$ | ||
P^{(n)} = P^{(n-1)} \cdot P | ||
$$ | ||
|
||
通过重复上述过程,可以得到任意步数的多步转移概率。 | ||
|
||
### 示例 | ||
假设有一个简单的马尔可夫链,其状态空间为 $\{A, B, C\}$,对应的单步转移矩阵为: | ||
|
||
$$ | ||
P = \begin{pmatrix} | ||
0.5 & 0.3 & 0.2 \\ | ||
0.4 & 0.4 & 0.2 \\ | ||
0.1 & 0.6 & 0.3 | ||
\end{pmatrix} | ||
$$ | ||
|
||
要计算从状态 $A$ 到状态 $C$ 的两步转移概率 $P^{(2)}_{AC}$,我们首先计算矩阵平方: | ||
|
||
1. **计算 $P^2 = P \cdot P$** | ||
|
||
$$ | ||
P^2 = \begin{pmatrix} | ||
0.5 & 0.3 & 0.2 \\ | ||
0.4 & 0.4 & 0.2 \\ | ||
0.1 & 0.6 & 0.3 | ||
\end{pmatrix} \cdot \begin{pmatrix} | ||
0.5 & 0.3 & 0.2 \\ | ||
0.4 & 0.4 & 0.2 \\ | ||
0.1 & 0.6 & 0.3 | ||
\end{pmatrix} | ||
$$ | ||
|
||
我们逐行计算矩阵乘法的结果: | ||
|
||
- 第一行: | ||
- 第一个元素:$(0.5 \times 0.5) + (0.3 \times 0.4) + (0.2 \times 0.1) = 0.25 + 0.12 + 0.02 = 0.39$ | ||
- 第二个元素:$(0.5 \times 0.3) + (0.3 \times 0.4) + (0.2 \times 0.6) = 0.15 + 0.12 + 0.12 = 0.39$ | ||
- 第三个元素:$(0.5 \times ० .2) + (० .3 × .२ )+ (० .2 × .३ )=0 .1+0 .06+0 .06=0 .12$ | ||
|
||
- 第二行: | ||
- 第一个元素:$(۰ .۴ ×۰ .۵)+(۰ .4 ×۰ .۴)+(۰ .2 ×۰ .1)=0 .20+۰ .۱۶+۰ .02=0.38$ | ||
- 第二个元素:$(۰.4×۰.3)+(0.4×۰.4)+(۰.2×०.६)=०.12+०.16+०.12=०.४○$ | ||
- 第三个元素:$(٠٫٤×٠٫٢)+(٠٫٤×٠٫2)+(٠٫٢×٠٫٣)=٠٫٠8+٠٫٠٨+٠٫٠6=〇。〇₂$ | ||
|
||
- 第三行: | ||
- 第一个元素:。。。 | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,14 @@ | ||
--- | ||
tags: | ||
- 数学 | ||
dlink: | ||
- "[[---马尔可夫链---]]" | ||
--- | ||
当[[马尔可夫过程]]的状态空间和时间都离散时,称为马尔可夫链。假设有一个有限的状态集合 $S = \{s_1, s_2, \ldots, s_n\}$,其转移概率矩阵为 $P$,其中 $P_{ij} = P(X_{t+1} = s_j | X_t = s_i)$ 表示从状态 $s_i$ 转移到状态 $s_j$ 的概率。 | ||
|
||
### 平稳分布 | ||
在某些条件下,马尔可夫链会趋向于一个平稳分布(stationary distribution),即存在一个概率分布 $\pi$,使得: | ||
$$ | ||
\pi P = \pi | ||
$$ | ||
这表明,在平稳分布下,系统在长时间运行后,其状态分布不再变化。 |