-
Preprocessing none
-
Prediction
RandomForestClassifier
training_data.csv (training) testing_data.csv (for prediction) ⇒ predict.py ⇒ predicted_results.csv
-
Preprocessing
-
replacing missing value with mean
training_data.csv ⇒ impute.py ⇒ data_filled_mean.csv
-
resample data with SMOTE
data_filled_mean.csv ⇒ resample.csv ⇒ data_resampled.csv
-
-
Prediction
scaling then use tf.keras.models.Sequential for training/prediction
data_resampled.csv (training) testing_data.csv (for prediction) ⇒ predict.py ⇒ predicted_results.csv
-
fill the first col-name with id in both testing/training data
-
Preprocessing
-
replacing missing value with mean
training_data.csv ⇒ impute.py ⇒ data_filled_mean.csv
-
resample data with SMOTE
data_filled_mean.csv ⇒ resample.csv ⇒ data_resampled.csv
-
-
Prediction
scaling then use tf.keras.models.Sequential for training/prediction
data_resampled.csv (training) testing_data.csv (for prediction) ⇒ predict.py ⇒ predicted_results.csv