-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSegDisplayRecog.cpp
126 lines (111 loc) · 5.64 KB
/
SegDisplayRecog.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
#include "header/MLPerceptrons.h"
#include <iostream>
#include <sstream>
using namespace std;
vector<double> vectorReader() {
vector<double> inputVec = {0, 1};
string input;
while (inputVec.size() != 7) {
inputVec = {};
cout << "Input pattern \"a b c d e f g\": ";
getline(cin, input);
stringstream ss(input);
double val;
while ( ss >> val) {
inputVec.push_back(val);
if (ss.peek() == ' ') {
ss.ignore();
}
}
if (inputVec[0] < 0.0){
break;
}
if (inputVec.size() != 7) {
cout << "Error: Input must contain exactly 7 floating point values separated by spaces." << endl;
}
}
return inputVec;
}
int main () {
srand(time(NULL));
rand();
int epochs;
double MSE;
// Segment Display Recognition:
// Recognize number from a seven-segment display
cout << "-------------------------------- Segment Display Recognition System --------------------------------" << endl;
cout << "How many epochs?: ";
cin >> epochs;
cin.ignore();
// 7 to 1 MM
MultilayerPerceptron sdr({7, 7, 1}); // 7 inout, 7 neurons, 1 hidden layer, 1 output layer
for (int i = 0; i < epochs; i++) {
MSE = 0.0;
MSE += sdr.backPropagation({1, 1, 1, 1, 1, 1, 0}, {0.05}); // 0 pattern
MSE += sdr.backPropagation({0, 1, 1, 0, 0, 0, 0}, {0.15}); // 1 pattern
MSE += sdr.backPropagation({1, 1, 0, 1, 1, 0, 1}, {0.25}); // 2 pattern
MSE += sdr.backPropagation({1, 1, 1, 1, 0, 0, 1}, {0.35}); // 3 pattern
MSE += sdr.backPropagation({0, 1, 1, 0, 0, 1, 1}, {0.45}); // 4 pattern
MSE += sdr.backPropagation({1, 0, 1, 1, 0, 1, 1}, {0.55}); // 5 pattern
MSE += sdr.backPropagation({1, 0, 1, 1, 1, 1, 1}, {0.65}); // 6 pattern
MSE += sdr.backPropagation({1, 1, 1, 0, 0, 0, 0}, {0.75}); // 7 pattern
MSE += sdr.backPropagation({1, 1, 1, 1, 1, 1, 1}, {0.85}); // 8 pattern
MSE += sdr.backPropagation({1, 1, 1, 1, 0, 1, 1}, {0.95}); // 9 pattern
}
MSE /= 10.0; // number of different ouputs
cout << "7 to 1 Network MSE: " << MSE << endl;
// 7 to 10 NN
MultilayerPerceptron sdrTen({7, 7, 10}); // 7 inout, 7 neurons, 1 hidden layer, 10 output layer
for (int i = 0; i < epochs; i++) {
MSE = 0.0;
MSE += sdrTen.backPropagation({1, 1, 1, 1, 1, 1, 0}, {1, 0, 0, 0, 0, 0, 0, 0, 0, 0}); // 0 pattern
MSE += sdrTen.backPropagation({0, 1, 1, 0, 0, 0, 0}, {0, 1, 0, 0, 0, 0, 0, 0, 0, 0}); // 1 pattern
MSE += sdrTen.backPropagation({1, 1, 0, 1, 1, 0, 1}, {0, 0, 1, 0, 0, 0, 0, 0, 0, 0}); // 2 pattern
MSE += sdrTen.backPropagation({1, 1, 1, 1, 0, 0, 1}, {0, 0, 0, 1, 0, 0, 0, 0, 0, 0}); // 3 pattern
MSE += sdrTen.backPropagation({0, 1, 1, 0, 0, 1, 1}, {0, 0, 0, 0, 1, 0, 0, 0, 0, 0}); // 4 pattern
MSE += sdrTen.backPropagation({1, 0, 1, 1, 0, 1, 1}, {0, 0, 0, 0, 0, 1, 0, 0, 0, 0}); // 5 pattern
MSE += sdrTen.backPropagation({1, 0, 1, 1, 1, 1, 1}, {0, 0, 0, 0, 0, 0, 1, 0, 0, 0}); // 6 pattern
MSE += sdrTen.backPropagation({1, 1, 1, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 1, 0, 0}); // 7 pattern
MSE += sdrTen.backPropagation({1, 1, 1, 1, 1, 1, 1}, {0, 0, 0, 0, 0, 0, 0, 0, 1, 0}); // 8 pattern
MSE += sdrTen.backPropagation({1, 1, 1, 1, 0, 1, 1}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 1}); // 9 pattern
}
MSE /= 10.0; // number of different ouputs
cout << "7 to 10 Network MSE: " << MSE << endl;
// 7 to 7 NN
MultilayerPerceptron sdrS({7, 7, 7}); // 7 inout, 7 neurons, 1 hidden layer, 7 output layer
for (int i = 0; i < epochs; i++) {
MSE = 0.0;
MSE += sdrS.backPropagation({1, 1, 1, 1, 1, 1, 0}, {1, 1, 1, 1, 1, 1, 0}); // 0 pattern
MSE += sdrS.backPropagation({0, 1, 1, 0, 0, 0, 0}, {0, 1, 1, 0, 0, 0, 0}); // 1 pattern
MSE += sdrS.backPropagation({1, 1, 0, 1, 1, 0, 1}, {1, 1, 0, 1, 1, 0, 1}); // 2 pattern
MSE += sdrS.backPropagation({1, 1, 1, 1, 0, 0, 1}, {1, 1, 1, 1, 0, 0, 1}); // 3 pattern
MSE += sdrS.backPropagation({0, 1, 1, 0, 0, 1, 1}, {0, 1, 1, 0, 0, 1, 1}); // 4 pattern
MSE += sdrS.backPropagation({1, 0, 1, 1, 0, 1, 1}, {1, 0, 1, 1, 0, 1, 1}); // 5 pattern
MSE += sdrS.backPropagation({1, 0, 1, 1, 1, 1, 1}, {1, 0, 1, 1, 1, 1, 1}); // 6 pattern
MSE += sdrS.backPropagation({1, 1, 1, 0, 0, 0, 0}, {1, 1, 1, 0, 0, 0, 0}); // 7 pattern
MSE += sdrS.backPropagation({1, 1, 1, 1, 1, 1, 1}, {1, 1, 1, 1, 1, 1, 1}); // 8 pattern
MSE += sdrS.backPropagation({1, 1, 1, 1, 0, 1, 1}, {1, 1, 1, 1, 0, 1, 1}); // 9 pattern
}
MSE /= 10.0; // number of different ouputs
cout << "7 to 10 Network MSE: " << MSE << endl;
// Classifier tester
vector<double> inputPattern = {1.2};
while(inputPattern[0] >= 0.0) {
inputPattern = vectorReader();
if (inputPattern[0] < 0.0) {
break;
}
cout << "The output for above sample by 7 to 1 Network is " << (int) (sdr.run(inputPattern)[0] * 10) << endl;
auto numList = sdrTen.run(inputPattern);
auto maxItr = max_element(numList.begin(), numList.end());
auto maxIdx = distance(numList.begin(), maxItr);
cout << "The output for above sample by 7 to 10 Network is " << maxIdx << endl;
numList = sdrS.run(inputPattern);
cout << "The output for above sample by 7 to 10 Network is [";
for (auto i : numList){
cout << " " << int(i + 0.5);
}
cout << " ]" << endl << endl;
}
return 0;
}