Skip to content

LLM Guide

majid edited this page Feb 12, 2025 · 4 revisions

Understanding and Working with Local LLMs

🧠 Introduction to LLMs

What are LLMs?

Large Language Models (LLMs) are advanced AI systems trained on vast amounts of text data. They represent a breakthrough in natural language processing, enabling sophisticated language understanding and generation capabilities.

Understanding Tokens and Context Windows

What are Tokens?

Tokens are the basic units that LLMs use to process text. They are not exactly words, but rather pieces of words that the model understands. Here's how tokenization works:

  • A word might be split into multiple tokens
  • Common words might be single tokens
  • Rare words might be split into several tokens
  • Special characters and spaces are also tokens

Examples:

"Hello"          β†’ 1 token
"understanding"  β†’ 2 tokens (under + standing)
"chatbot"        β†’ 2 tokens (chat + bot)
"!" or " "       β†’ 1 token each

Context Window and Max Tokens

  • Context Window (e.g., 8192 tokens):

    • The total amount of text (in tokens) the model can consider at once
    • Includes both input (prompt) and output (response)
    • Like the model's "working memory"
    • Example: 8192 tokens β‰ˆ 6000 words or about 20 pages of text
  • Max Tokens (e.g., 2048 tokens):

    • Maximum length of the model's response
    • Must be less than the context window
    • Controls how long the generated text can be
    • Example: 2048 tokens β‰ˆ 1500 words or about 5 pages of text
graph TD
    subgraph Context[Context Window: 8192 tokens]
        Input[Input/Prompt]
        Output[Max Output: 2048 tokens]
        Memory[Remaining Context: 6144 tokens]
    end

    Input --> Output
    Input --> Memory
    
    style Context fill:#e3f2fd,stroke:#1565c0
    style Input fill:#c8e6c9
    style Output fill:#ffcdd2
    style Memory fill:#fff3e0
Loading

Practical Implications

  1. Memory Management

    • Longer context = More memory usage
    • Larger context window = Higher GPU/RAM requirements
    • Need to balance between context size and performance
  2. Cost Considerations

    • More tokens = Higher processing cost
    • Need to optimize prompt length
    • Balance between detail and efficiency
  3. Performance Impact

    • Larger context = Slower processing
    • Need to chunk long texts
    • Consider streaming for long responses
graph TD
    subgraph LLM[Large Language Model]
        Input[Text Input] --> Tokens[Tokenization]
        Tokens --> Attention[Self-Attention]
        Attention --> Process[Neural Processing]
        Process --> Output[Text Generation]
    end

    style LLM fill:#f3e5f5,stroke:#4a148c
Loading

Key Concepts

Transformer Architecture

graph TD
    subgraph TA[Transformer Architecture]
        Input[Input Embedding]
        PE[Positional Encoding]
        SA[Self-Attention]
        FF[Feed Forward]
        Norm[Layer Norm]
        Output[Output Layer]
    end

    Input --> PE
    PE --> SA
    SA --> FF
    FF --> Norm
    Norm --> Output

    style TA fill:#e3f2fd,stroke:#1565c0
Loading

Self-Attention Mechanism

graph LR
    Q[Query] --> Attention
    K[Key] --> Attention
    V[Value] --> Attention
    Attention --> Output[Weighted Sum]

    style Q fill:#e8f5e9
    style K fill:#fff3e0
    style V fill:#f3e5f5
    style Output fill:#e1f5fe
Loading

πŸš€ Local LLMs Guide

Latest LLM Models (2024)

Model Architecture Parameters Context Best For
Phi MoE 16 x 3.8B 4K Math & Reasoning
Mistral Dense 7B 8K General Use
ORCA Dense 7B 8K Education
Llama Dense 7-65B 8K Research

System Requirements

graph TD
    subgraph Requirements[System Requirements]
        CPU[CPU/RAM]
        GPU[GPU/VRAM]
        Storage[Storage]
        Network[Network]
    end

    CPU --> Performance
    GPU --> Performance
    Storage --> Performance
    Network --> Performance

    style Requirements fill:#e8f5e9,stroke:#2e7d32
Loading
Component Basic Standard Advanced
CPU 4 cores 8 cores 16+ cores
RAM 8GB 16GB 32GB+
GPU None 6GB VRAM 12GB+ VRAM
Storage 10GB 20GB 50GB+

βš™οΈ LLM Optimization

Key Parameters

Temperature Control

def generate_response(prompt: str, temperature: float = 0.7) -> str:
    """
    Generate LLM response with temperature control.
    
    Args:
        prompt: Input text
        temperature: Controls randomness (0.0-1.0)
            - 0.2: More focused, deterministic
            - 0.7: Balanced creativity
            - 1.0: More random, creative
    """
    return llm.generate(
        prompt=prompt,
        temperature=temperature,
        max_tokens=1024
    )

Context Window Management

def process_long_text(text: str, window_size: int = 4096) -> List[str]:
    """
    Process long text using sliding context window.
    
    Args:
        text: Long input text
        window_size: Context window size
    
    Returns:
        List of responses for each window
    """
    chunks = text_splitter.split_text(text, chunk_size=window_size)
    responses = []
    
    for chunk in chunks:
        response = llm.generate(chunk)
        responses.append(response)
    
    return responses

Performance Tuning

CPU Optimization

def optimize_cpu_inference():
    """Configure CPU-optimized inference settings."""
    return {
        "threads": multiprocessing.cpu_count(),
        "batch_size": 1,
        "quantization": "int8",
        "compute_type": "float16"
    }

GPU Acceleration

def setup_gpu_inference():
    """Configure GPU-accelerated inference."""
    return {
        "device": "cuda",
        "precision": "float16",
        "memory_efficient": True,
        "batch_size": 4
    }

πŸ“Š Model Selection Guide

Use Case Decision Tree

graph TD
    Start[Select Model] --> Q1{Hardware?}
    Q1 -->|Basic| Basic[Phi-2]
    Q1 -->|Standard| Q2{Use Case?}
    Q1 -->|Advanced| Advanced[Llama-2]
    
    Q2 -->|Education| Education[ORCA-2]
    Q2 -->|General| General[Mistral-7B]
    
    style Start fill:#e3f2fd
    style Basic fill:#c8e6c9
    style Advanced fill:#ffcdd2
    style Education fill:#fff3e0
    style General fill:#e1bee7
Loading

Configuration Examples

# config.yaml - Basic Setup
llm:
  model: mistral-7b
  temperature: 0.7
  max_tokens: 2048
  context_window: 8192

optimization:
  quantization: int8
  threads: 4
  batch_size: 1
  cuda_enabled: true

# Advanced Setup
advanced_llm:
  model: llama-2-13b
  temperature: 0.5
  max_tokens: 4096
  context_window: 16384
  
  optimization:
    quantization: int4
    threads: 8
    batch_size: 4
    cuda_layers: all
    kv_cache: true

πŸ” Troubleshooting Guide

Common Issues

Issue Possible Cause Solution
High Latency Large context window Reduce window size
OOM Errors Insufficient RAM/VRAM Enable quantization
Poor Quality Wrong temperature Adjust parameters
CPU Bottleneck Single threading Enable multi-threading

Performance Monitoring

def monitor_performance():
    """Monitor LLM inference performance."""
    metrics = {
        "latency": [],
        "memory_usage": [],
        "token_throughput": []
    }
    
    while True:
        # Track performance metrics
        latency = measure_latency()
        memory = measure_memory()
        throughput = measure_throughput()
        
        # Update metrics
        metrics["latency"].append(latency)
        metrics["memory_usage"].append(memory)
        metrics["token_throughput"].append(throughput)
        
        # Generate report
        if should_report():
            generate_performance_report(metrics)