-
Notifications
You must be signed in to change notification settings - Fork 180
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
test file for FCNNetwork added (#2559)
- Loading branch information
1 parent
a0c58dc
commit 0dfe3ca
Showing
1 changed file
with
196 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,196 @@ | ||
"""Test for the FCNNetwork class.""" | ||
|
||
import pytest | ||
|
||
from aeon.networks import FCNNetwork | ||
from aeon.utils.validation._dependencies import _check_soft_dependencies | ||
|
||
|
||
@pytest.mark.skipif( | ||
not _check_soft_dependencies(["tensorflow"], severity="none"), | ||
reason="Tensorflow soft dependency unavailable.", | ||
) | ||
def test_fcnnetwork_valid(): | ||
"""Test FCNNetwork with valid configurations.""" | ||
input_shape = (100, 5) | ||
model = FCNNetwork(n_layers=3) | ||
input_layer, output_layer = model.build_network(input_shape) | ||
|
||
assert hasattr(input_layer, "shape") | ||
assert hasattr(output_layer, "shape") | ||
|
||
|
||
@pytest.mark.skipif( | ||
not _check_soft_dependencies(["tensorflow"], severity="none"), | ||
reason="Tensorflow soft dependency unavailable.", | ||
) | ||
@pytest.mark.parametrize( | ||
"activation, should_raise", | ||
[ | ||
(["relu", "sigmoid", "tanh"], False), | ||
(["relu", "sigmoid"], True), | ||
( | ||
["relu", "sigmoid", "tanh", "softmax"], | ||
True, | ||
), | ||
("relu", False), | ||
("sigmoid", False), | ||
("tanh", False), | ||
("softmax", False), | ||
], | ||
) | ||
def test_fcnnetwork_activation(activation, should_raise): | ||
"""Test FCNNetwork with valid and invalid activation configurations.""" | ||
input_shape = (100, 5) | ||
if should_raise: | ||
with pytest.raises(ValueError): | ||
model = FCNNetwork(activation=activation) | ||
model.build_network(input_shape) | ||
else: | ||
model = FCNNetwork(activation=activation) | ||
input_layer, output_layer = model.build_network(input_shape) | ||
|
||
assert hasattr(input_layer, "shape") | ||
|
||
assert hasattr(output_layer, "shape") | ||
|
||
|
||
@pytest.mark.skipif( | ||
not _check_soft_dependencies(["tensorflow"], severity="none"), | ||
reason="Tensorflow soft dependency unavailable.", | ||
) | ||
@pytest.mark.parametrize( | ||
"kernel_size, should_raise", | ||
[ | ||
([3, 1, 2], False), | ||
([1, 3], True), | ||
([3, 1, 1, 3], True), | ||
(3, False), | ||
], | ||
) | ||
def test_fcnnetwork_kernel_size(kernel_size, should_raise): | ||
"""Test FCNNetwork with valid and invalid kernel_size configurations.""" | ||
input_shape = (100, 5) | ||
if should_raise: | ||
with pytest.raises(ValueError): | ||
model = FCNNetwork(kernel_size=kernel_size, n_layers=3) | ||
model.build_network(input_shape) | ||
else: | ||
model = FCNNetwork(kernel_size=kernel_size, n_layers=3) | ||
input_layer, output_layer = model.build_network(input_shape) | ||
|
||
assert hasattr(input_layer, "shape") | ||
assert hasattr(output_layer, "shape") | ||
|
||
|
||
@pytest.mark.skipif( | ||
not _check_soft_dependencies(["tensorflow"], severity="none"), | ||
reason="Tensorflow soft dependency unavailable.", | ||
) | ||
@pytest.mark.parametrize( | ||
"dilation_rate, should_raise", | ||
[ | ||
([1, 2, 1], False), | ||
([1, 4], True), | ||
([1, 2, 4, 1], True), | ||
(1, False), | ||
], | ||
) | ||
def test_fcnnetwork_dilation_rate(dilation_rate, should_raise): | ||
"""Test FCNNetwork with valid and invalid dilation_rate configurations.""" | ||
input_shape = (100, 5) | ||
if should_raise: | ||
with pytest.raises(ValueError): | ||
model = FCNNetwork(dilation_rate=dilation_rate, n_layers=3) | ||
model.build_network(input_shape) | ||
else: | ||
model = FCNNetwork(dilation_rate=dilation_rate, n_layers=3) | ||
input_layer, output_layer = model.build_network(input_shape) | ||
|
||
assert hasattr(input_layer, "shape") | ||
assert hasattr(output_layer, "shape") | ||
|
||
|
||
@pytest.mark.skipif( | ||
not _check_soft_dependencies(["tensorflow"], severity="none"), | ||
reason="Tensorflow soft dependency unavailable.", | ||
) | ||
@pytest.mark.parametrize( | ||
"strides, should_raise", | ||
[ | ||
([1, 2, 3], False), | ||
([1, 1], True), | ||
([1, 2, 2, 1], True), | ||
(1, False), | ||
], | ||
) | ||
def test_fcnnetwork_strides(strides, should_raise): | ||
"""Test FCNNetwork with valid and invalid strides configurations.""" | ||
input_shape = (100, 5) | ||
if should_raise: | ||
with pytest.raises(ValueError): | ||
model = FCNNetwork(strides=strides, n_layers=3) | ||
model.build_network(input_shape) | ||
else: | ||
model = FCNNetwork(strides=strides, n_layers=3) | ||
input_layer, output_layer = model.build_network(input_shape) | ||
|
||
assert hasattr(input_layer, "shape") | ||
assert hasattr(output_layer, "shape") | ||
|
||
|
||
@pytest.mark.skipif( | ||
not _check_soft_dependencies(["tensorflow"], severity="none"), | ||
reason="Tensorflow soft dependency unavailable.", | ||
) | ||
@pytest.mark.parametrize( | ||
"padding, should_raise", | ||
[ | ||
(["same", "same", "valid"], False), | ||
(["valid", "same"], True), | ||
(["same", "valid", "same", "valid"], True), | ||
("same", False), | ||
("valid", False), | ||
], | ||
) | ||
def test_fcnnetwork_padding(padding, should_raise): | ||
"""Test FCNNetwork with valid and invalid padding configurations.""" | ||
input_shape = (100, 5) | ||
if should_raise: | ||
with pytest.raises(ValueError): | ||
model = FCNNetwork(padding=padding, n_layers=3) | ||
model.build_network(input_shape) | ||
else: | ||
model = FCNNetwork(padding=padding, n_layers=3) | ||
input_layer, output_layer = model.build_network(input_shape) | ||
|
||
assert hasattr(input_layer, "shape") | ||
assert hasattr(output_layer, "shape") | ||
|
||
|
||
@pytest.mark.skipif( | ||
not _check_soft_dependencies(["tensorflow"], severity="none"), | ||
reason="Tensorflow soft dependency unavailable.", | ||
) | ||
@pytest.mark.parametrize( | ||
"n_filters, should_raise", | ||
[ | ||
([32, 64, 128], False), # Valid case with a list of filters | ||
([32, 64], True), # Invalid case with fewer filters than layers | ||
([32, 64, 128, 256], True), # Invalid case with more filters than layers | ||
(32, False), # Valid case with a single filter value | ||
], | ||
) | ||
def test_fcnnetwork_n_filters(n_filters, should_raise): | ||
"""Test FCNNetwork with valid and invalid n_filters configurations.""" | ||
input_shape = (100, 5) | ||
if should_raise: | ||
with pytest.raises(ValueError): | ||
model = FCNNetwork(n_filters=n_filters, n_layers=3) | ||
model.build_network(input_shape) | ||
else: | ||
model = FCNNetwork(n_filters=n_filters, n_layers=3) | ||
input_layer, output_layer = model.build_network(input_shape) | ||
|
||
assert hasattr(input_layer, "shape") | ||
assert hasattr(output_layer, "shape") |