-
Notifications
You must be signed in to change notification settings - Fork 180
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[ENH] Test coverage for TimeCNNNetwork Improved (#2534)
* Test coverage improved for cnn network * assertion changed for test_cnn * coverage improved along with naming
- Loading branch information
1 parent
6642bab
commit 7518feb
Showing
2 changed files
with
274 additions
and
22 deletions.
There are no files selected for viewing
This file was deleted.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,274 @@ | ||
"""Tests for the TimeCNNNetwork Model.""" | ||
|
||
import pytest | ||
|
||
from aeon.networks import TimeCNNNetwork | ||
from aeon.utils.validation._dependencies import _check_soft_dependencies | ||
|
||
|
||
@pytest.mark.skipif( | ||
not _check_soft_dependencies(["tensorflow"], severity="none"), | ||
reason="Tensorflow soft dependency unavailable.", | ||
) | ||
def test_time_cnn_input_shape_padding(): | ||
"""Test of CNN network with input_shape < 60.""" | ||
input_shape = (40, 2) | ||
network = TimeCNNNetwork() | ||
input_layer, output_layer = network.build_network(input_shape=input_shape) | ||
|
||
assert hasattr(input_layer, "shape") | ||
assert hasattr(output_layer, "shape") | ||
|
||
|
||
@pytest.mark.skipif( | ||
not _check_soft_dependencies(["tensorflow"], severity="none"), | ||
reason="Tensorflow soft dependency unavailable.", | ||
) | ||
@pytest.mark.parametrize( | ||
"activation, n_layers, should_raise", | ||
[ | ||
("relu", 2, False), | ||
("sigmoid", 2, False), | ||
("tanh", 2, False), | ||
(["relu", "sigmoid", "tanh"], 2, True), | ||
(["relu"], 2, True), | ||
], | ||
) | ||
def test_time_cnn_activation(activation, n_layers, should_raise): | ||
"""Test activation configuration handling.""" | ||
input_shape = (100, 5) | ||
if should_raise: | ||
with pytest.raises(ValueError): | ||
network = TimeCNNNetwork(activation=activation, n_layers=n_layers) | ||
network.build_network(input_shape=input_shape) | ||
else: | ||
network = TimeCNNNetwork(activation=activation, n_layers=n_layers) | ||
input_layer, output_layer = network.build_network(input_shape=input_shape) | ||
|
||
assert hasattr(input_layer, "shape") | ||
assert hasattr(output_layer, "shape") | ||
|
||
|
||
@pytest.mark.skipif( | ||
not _check_soft_dependencies(["tensorflow"], severity="none"), | ||
reason="Tensorflow soft dependency unavailable.", | ||
) | ||
@pytest.mark.parametrize( | ||
"kernel_size, n_layers, should_raise", | ||
[ | ||
(7, 2, False), | ||
([5, 3], 2, False), | ||
([5, 3, 2], 2, True), | ||
([5], 2, True), | ||
], | ||
) | ||
def test_time_cnn_kernel_size(kernel_size, n_layers, should_raise): | ||
"""Test kernel size configuration with different layer counts.""" | ||
input_shape = (100, 5) | ||
if should_raise: | ||
with pytest.raises(ValueError): | ||
network = TimeCNNNetwork(n_layers=n_layers, kernel_size=kernel_size) | ||
network.build_network(input_shape=input_shape) | ||
else: | ||
network = TimeCNNNetwork(n_layers=n_layers, kernel_size=kernel_size) | ||
input_layer, output_layer = network.build_network(input_shape=input_shape) | ||
|
||
assert hasattr(input_layer, "shape") | ||
assert hasattr(output_layer, "shape") | ||
|
||
|
||
@pytest.mark.skipif( | ||
not _check_soft_dependencies(["tensorflow"], severity="none"), | ||
reason="Tensorflow soft dependency unavailable.", | ||
) | ||
@pytest.mark.parametrize( | ||
"n_layers,n_filters,should_raise", | ||
[ | ||
(2, [8, 16], False), | ||
(1, [12, 10, 4], True), | ||
(2, 8, False), | ||
(3, [8], True), | ||
], | ||
) | ||
def test_time_cnn_n_filters(n_layers, n_filters, should_raise): | ||
"""Test filter configuration handling.""" | ||
input_shape = (100, 5) | ||
if should_raise: | ||
with pytest.raises(ValueError): | ||
network = TimeCNNNetwork(n_layers=n_layers, n_filters=n_filters) | ||
network.build_network(input_shape=input_shape) | ||
else: | ||
network = TimeCNNNetwork(n_layers=n_layers, n_filters=n_filters) | ||
input_layer, output_layer = network.build_network(input_shape=input_shape) | ||
|
||
assert hasattr(input_layer, "shape") | ||
assert hasattr(output_layer, "shape") | ||
|
||
|
||
@pytest.mark.skipif( | ||
not _check_soft_dependencies(["tensorflow"], severity="none"), | ||
reason="Tensorflow soft dependency unavailable.", | ||
) | ||
@pytest.mark.parametrize( | ||
"avg_pool_size, n_layers, should_raise", | ||
[ | ||
(3, 2, False), | ||
([2, 3], 2, False), | ||
([2, 3, 4], 2, True), | ||
([2], 2, True), | ||
], | ||
) | ||
def test_time_cnn_avg_pool_size(avg_pool_size, n_layers, should_raise): | ||
"""Test average pool size configuration.""" | ||
input_shape = (100, 5) | ||
if should_raise: | ||
with pytest.raises(ValueError): | ||
network = TimeCNNNetwork(avg_pool_size=avg_pool_size, n_layers=n_layers) | ||
network.build_network(input_shape=input_shape) | ||
else: | ||
network = TimeCNNNetwork(avg_pool_size=avg_pool_size, n_layers=n_layers) | ||
input_layer, output_layer = network.build_network(input_shape=input_shape) | ||
|
||
assert hasattr(input_layer, "shape") | ||
assert hasattr(output_layer, "shape") | ||
|
||
|
||
@pytest.mark.skipif( | ||
not _check_soft_dependencies(["tensorflow"], severity="none"), | ||
reason="Tensorflow soft dependency unavailable.", | ||
) | ||
@pytest.mark.parametrize( | ||
"strides_pooling, n_layers, should_raise", | ||
[ | ||
(None, 2, False), | ||
(2, 2, False), | ||
([2, 3], 2, False), | ||
([2, 3, 4], 2, True), | ||
([2], 2, True), | ||
], | ||
) | ||
def test_time_cnn_strides_pooling(strides_pooling, n_layers, should_raise): | ||
"""Test strides pooling configuration.""" | ||
input_shape = (100, 5) | ||
if should_raise: | ||
with pytest.raises(ValueError): | ||
network = TimeCNNNetwork(strides_pooling=strides_pooling, n_layers=n_layers) | ||
network.build_network(input_shape=input_shape) | ||
else: | ||
network = TimeCNNNetwork(strides_pooling=strides_pooling, n_layers=n_layers) | ||
input_layer, output_layer = network.build_network(input_shape=input_shape) | ||
|
||
assert hasattr(input_layer, "shape") | ||
assert hasattr(output_layer, "shape") | ||
|
||
|
||
@pytest.mark.skipif( | ||
not _check_soft_dependencies(["tensorflow"], severity="none"), | ||
reason="Tensorflow soft dependency unavailable.", | ||
) | ||
@pytest.mark.parametrize( | ||
"padding, n_layers, should_raise", | ||
[ | ||
("valid", 2, False), | ||
("same", 2, False), | ||
(["same", "valid"], 2, False), | ||
(["same", "valid", "same"], 2, True), | ||
(["same"], 2, True), | ||
], | ||
) | ||
def test_time_cnn_padding(padding, n_layers, should_raise): | ||
"""Test padding override behavior for different inputs.""" | ||
input_shape = (100, 5) | ||
if should_raise: | ||
with pytest.raises(ValueError): | ||
network = TimeCNNNetwork(padding=padding, n_layers=n_layers) | ||
network.build_network(input_shape=input_shape) | ||
else: | ||
network = TimeCNNNetwork(padding=padding, n_layers=n_layers) | ||
input_layer, output_layer = network.build_network(input_shape=input_shape) | ||
assert hasattr(input_layer, "shape") | ||
assert hasattr(output_layer, "shape") | ||
|
||
|
||
@pytest.mark.skipif( | ||
not _check_soft_dependencies(["tensorflow"], severity="none"), | ||
reason="Tensorflow soft dependency unavailable.", | ||
) | ||
@pytest.mark.parametrize( | ||
"dilation, n_layers, should_raise", | ||
[ | ||
(2, 2, False), | ||
([1, 2], 2, False), | ||
([1, 2, 3], 2, True), | ||
([1], 2, True), | ||
], | ||
) | ||
def test_time_cnn_dilation_rate(dilation, n_layers, should_raise): | ||
"""Test dilation rate configuration.""" | ||
input_shape = (100, 5) | ||
if should_raise: | ||
with pytest.raises(ValueError): | ||
network = TimeCNNNetwork(dilation_rate=dilation, n_layers=n_layers) | ||
network.build_network(input_shape=input_shape) | ||
else: | ||
network = TimeCNNNetwork(dilation_rate=dilation, n_layers=n_layers) | ||
input_layer, output_layer = network.build_network(input_shape=input_shape) | ||
|
||
assert hasattr(input_layer, "shape") | ||
assert hasattr(output_layer, "shape") | ||
|
||
|
||
@pytest.mark.skipif( | ||
not _check_soft_dependencies(["tensorflow"], severity="none"), | ||
reason="Tensorflow soft dependency unavailable.", | ||
) | ||
@pytest.mark.parametrize( | ||
"strides, n_layers, should_raise", | ||
[ | ||
(1, 2, False), | ||
([1, 2], 2, False), | ||
([1, 2, 3], 2, True), | ||
([1], 2, True), | ||
], | ||
) | ||
def test_time_cnn_strides(strides, n_layers, should_raise): | ||
"""Test strides configuration.""" | ||
input_shape = (100, 5) | ||
if should_raise: | ||
with pytest.raises(ValueError): | ||
network = TimeCNNNetwork(strides=strides, n_layers=n_layers) | ||
network.build_network(input_shape=input_shape) | ||
else: | ||
network = TimeCNNNetwork(strides=strides, n_layers=n_layers) | ||
input_layer, output_layer = network.build_network(input_shape=input_shape) | ||
|
||
assert hasattr(input_layer, "shape") | ||
assert hasattr(output_layer, "shape") | ||
|
||
|
||
@pytest.mark.skipif( | ||
not _check_soft_dependencies(["tensorflow"], severity="none"), | ||
reason="Tensorflow soft dependency unavailable.", | ||
) | ||
@pytest.mark.parametrize( | ||
"use_bias, n_layers, should_raise", | ||
[ | ||
(True, 2, False), | ||
([True, False], 2, False), | ||
([True, False, True], 2, True), | ||
([True], 2, True), | ||
], | ||
) | ||
def test_time_cnn_use_bias(use_bias, n_layers, should_raise): | ||
"""Test bias usage configuration.""" | ||
input_shape = (100, 5) | ||
if should_raise: | ||
with pytest.raises(ValueError): | ||
network = TimeCNNNetwork(use_bias=use_bias, n_layers=n_layers) | ||
network.build_network(input_shape=input_shape) | ||
else: | ||
network = TimeCNNNetwork(use_bias=use_bias, n_layers=n_layers) | ||
input_layer, output_layer = network.build_network(input_shape=input_shape) | ||
|
||
assert hasattr(input_layer, "shape") | ||
assert hasattr(output_layer, "shape") |