Skip to content

Commit

Permalink
updated code in attempt to fix pca problem
Browse files Browse the repository at this point in the history
  • Loading branch information
Ramana-Raja committed Mar 2, 2025
1 parent eb467a0 commit 7b990d5
Showing 1 changed file with 3 additions and 5 deletions.
8 changes: 3 additions & 5 deletions aeon/clustering/feature_based/_r_cluster.py
Original file line number Diff line number Diff line change
Expand Up @@ -411,7 +411,6 @@ def _fit(self, X, y=None):
parameters = self._get_parameterised_data(X)

transformed_data = self._get_transformed_data(X=X, parameters=parameters)

self.scaler = StandardScaler()
X_std = self.scaler.fit_transform(transformed_data)

Expand All @@ -421,7 +420,7 @@ def _fit(self, X, y=None):
self.optimal_dimensions = max(
1, min(optimal_dimensions, X_std.shape[0], X_std.shape[1])
)

self.x_test = X
pca = PCA(n_components=optimal_dimensions, random_state=self.random_state)
transformed_data_pca = pca.fit_transform(X_std)
self.estimator = KMeans(
Expand All @@ -436,12 +435,11 @@ def _predict(self, X, y=None) -> np.ndarray:
parameters = self._get_parameterised_data(X)

transformed_data = self._get_transformed_data(X=X, parameters=parameters)

X_std = self.scaler.fit_transform(transformed_data)
if self.optimal_dimensions > max(1, min(X_std.shape[0], X_std.shape[1])):
raise ValueError(
f"optimal dimensions={self.optimal_dimensions} must be between 0 and "
f"min(n_samples, n_features)={min(X_std.shape[0], X_std.shape[1])}"
f"fitted x={self.x_test} must be between 0 and "
f"sample x ={X}"
)
pca = PCA(n_components=self.optimal_dimensions, random_state=self.random_state)
transformed_data_pca = pca.fit_transform(X_std)
Expand Down

0 comments on commit 7b990d5

Please sign in to comment.