Skip to content

Commit

Permalink
Final formatting edits for EPJ ST submission.
Browse files Browse the repository at this point in the history
  • Loading branch information
ajsteinmetz committed Nov 6, 2024
1 parent cbdf17e commit b653281
Show file tree
Hide file tree
Showing 2 changed files with 40 additions and 34 deletions.
14 changes: 10 additions & 4 deletions 02z600StrangeHadrons.tex
Original file line number Diff line number Diff line change
Expand Up @@ -253,9 +253,10 @@ \subsection{Strange hadron abundance in cosmic plasma}
\end{align}
Here the experimental cross-sections can be parameterized as
\begin{align}
&\sigma_{K^-p\rightarrow \Lambda\pi^0}\!\!=\!\!\left(\begin{array}{l}\!\!1479.53\mathrm{mb}\!\cdot\!\exp{\left(\frac{-3.377\sqrt{s}}{\mathrm{GeV}}\right)},\; \mathrm{for}\,\sqrt{s_m}\!\!<\!\!\sqrt{s}\!<\!3.2\mathrm{GeV} \\ \\0.3\mathrm{mb}\!\cdot\!\exp{\left(\frac{-0.72\sqrt{s}}{\mathrm{GeV}}\right)},\; \mathrm{for}\sqrt{s}>3.2\mathrm{GeV}\end{array}\right.\,,
\\
&\sigma_{K^-n\rightarrow \Lambda\pi^-}\!\!=\!\!1132.27\mathrm{mb}\!\cdot\!\exp{\left(\frac{-3.063\sqrt{s}}{\mathrm{GeV}}\right)},\; \mathrm{for}\sqrt{s}>1.699\mathrm{GeV},
&\sigma_{K^-p\rightarrow \Lambda\pi^0}\!\!=\!\!\left\{\begin{array}{l}\!\!1479.53\mathrm{mb}\!\cdot\!\displaystyle e^{\left(\frac{-3.377\sqrt{s}}{\mathrm{GeV}}\right)}\qquad \mathrm{for\ } \sqrt{s_m}\!\!<\!\!\sqrt{s}\!<\!3.2\mathrm{GeV}\,, \\[0.5cm]
0.3\mathrm{mb}\!\cdot\!\displaystyle e^{\left(\frac{-0.72\sqrt{s}}{\mathrm{GeV}}\right)}\qquad\qquad \mathrm{for\ }\sqrt{s}>3.2\mathrm{GeV}\,,\end{array}\right.
\\[0.4cm]
&\sigma_{K^-n\rightarrow \Lambda\pi^-}\!\!=\!\!1132.27\mathrm{mb}\!\cdot\!e^{\left(\frac{-3.063\sqrt{s}}{\mathrm{GeV}}\right)} \qquad\ \mathrm{for\ }\sqrt{s}>1.699\mathrm{GeV}\,,
\end{align}
where $\sqrt{s_m}=1.473\GeV$.\\
2) For the cross-section $\sigma_{\pi N\rightarrow K\Lambda}$ we use~\cite{Cugnon:1984pm}
Expand All @@ -264,7 +265,12 @@ \subsection{Strange hadron abundance in cosmic plasma}
\end{align}
The experimental $\sigma_{\pi p\rightarrow K^0\Lambda}$ can be approximated as follows
\begin{align}
\sigma_{\pi p\rightarrow K^0\Lambda}=\left(\begin{array}{l}\frac{0.9\mathrm{mb}\cdot\left(\sqrt{s}-\sqrt{s_0}\right)}{0.091\mathrm{GeV}},\; \mathrm{for} \sqrt{s_0}<\sqrt{s}<1.7\mathrm{GeV} \\ \\ \frac{90\mathrm{MeV\cdot mb}}{\sqrt{s}-1.6\mathrm{GeV}},\; \mathrm{for}\sqrt{s}>1.7\mathrm{GeV},\end{array}\right.
\sigma_{\pi p\rightarrow K^0\Lambda}=\left\{
\begin{array}{l}
\displaystyle\frac{0.9\mathrm{mb}\cdot\left(\sqrt{s}-\sqrt{s_0}\right)}{0.091\mathrm{GeV}}\qquad \mathrm{for\ } \sqrt{s_0}<\sqrt{s}<1.7\mathrm{GeV}\,, \\[0.5cm]
\displaystyle\frac{90\mathrm{MeV\cdot mb}}{\sqrt{s}-1.6\mathrm{GeV}}\qquad\qquad \quad \mathrm{for\
}\sqrt{s}>1.7\mathrm{GeV}\,,\end{array}\right.
\,,
\end{align}
with $ \sqrt{s_0}=m_\Lambda+m_K$.

Expand Down
60 changes: 30 additions & 30 deletions 10appDNeutrinoScatteringIntegrals.tex
Original file line number Diff line number Diff line change
Expand Up @@ -188,8 +188,8 @@ \subsection{Collision integral inner products}
\end{align}
where
\begin{align}
t(x)=&\frac{1}{4}((q^0)^2-r^2+((q^{\prime})^0)^2-(r^{\prime})^2-2q^0(q^{\prime})^0+2rr^{\prime}x),\\
=&\frac{1}{4}((q^0-(q^{\prime})^0)^2-r^2-(r^{\prime})^2+2rr^{\prime}x)\,.\notag
t(x)=&\frac{1}{4}((q^0)^2-r^2+((q^{\prime})^0)^2-(r^{\prime})^2-2q^0(q^{\prime})^0+2rr^{\prime}x),
= \frac{1}{4}((q^0-(q^{\prime})^0)^2-r^2-(r^{\prime})^2+2rr^{\prime}x)\,.
\end{align}

%%%%%%%%%%%%%%%%%%%%%%%%
Expand Down Expand Up @@ -335,15 +335,15 @@ \subsection{Electron and neutrino collision integrals}\label{nu:matrix:elements}
\end{table}
Using this we find
\begin{align}
&\int_0^{2\pi} S |\mathcal{M}|^2 (s,t(\cos(\psi)\sqrt{1-y^2}\sqrt{1-z^2}+yz))d\psi\\
=&\frac{\pi C}{16} s^2(3+4 yz-y^2-z^2+3y^2z^2)
\equiv\frac{\pi C}{16} s^2q(y,z)\,\notag\\
&K(s,p)=\frac{\pi^2C}{2}s^2\int_{-1}^1 \left[\int_{-1}^1q(y,z)G_{34}(p^0,-p y) dy\right] G_{12}(p^0,-p z)dz\,.\notag
\int_0^{2\pi} S |\mathcal{M}|^2 (s,t(\cos(\psi)\sqrt{1-y^2}\sqrt{1-z^2}+yz))d\psi
=& \frac{\pi C}{16} s^2(3+4 yz-y^2-z^2+3y^2z^2)
\equiv\frac{\pi C}{16} s^2q(y,z)\,, \\
K(s,p)=&\frac{\pi^2C}{2}s^2\int_{-1}^1 \left[\int_{-1}^1q(y,z)G_{34}(p^0,-p y) dy\right] G_{12}(p^0,-p z)dz\,.\notag
\end{align}
Therefore
\begin{align}\label{eq:M:nu:nubar}
&M_{\nu\bar\nu\rightarrow\nu\bar\nu}=\frac{C}{2048(2\pi)^5 }T^8\!\!\!\int_0^\infty\!\!\!\!\int_0^\infty\!\!\! \tilde{s}^2\bigg[\int_{-1}^1\!\int_{-1}^1q(y,z)\tilde{G}_{34}(\tilde p^0,-\tilde{p} y)\notag\\
&\hspace{58mm}\tilde{G}_{12}(\tilde p^0,-\tilde{p} z)dydz\bigg]\frac{\tilde{p}^2}{\tilde{p}^0}d\tilde{p}d\tilde{s}\,.\notag
M_{\nu\bar\nu\rightarrow\nu\bar\nu}=\frac{C}{2048(2\pi)^5 }T^8\! \int_0^\infty\!\!\int_0^\infty\!\!\! \tilde{s}^2\bigg[\int_{-1}^1\!\int_{-1}^1q(y,z)\tilde{G}_{34}(\tilde p^0,-\tilde{p} y)
\tilde{G}_{12}(\tilde p^0,-\tilde{p} z)dydz\bigg]\frac{\tilde{p}^2}{\tilde{p}^0}d\tilde{p}d\tilde{s}\,.
\end{align}
If we want to emphasize the role of $C$ then we write $M_{\nu\bar\nu\rightarrow\nu\bar\nu}(C)$. Note that due to the polynomial form of the matrix element integral, the double integral in brackets breaks into a linear combination of products of one dimensional integrals, meaning that the nesting of integrals is again only three deep in practice.

Expand Down Expand Up @@ -372,20 +372,20 @@ \subsection{Electron and neutrino collision integrals}\label{nu:matrix:elements}



The integral of each of these terms is
The integral of each of these terms is
\begin{align}
&\int_0^{2\pi}\frac{(s+t(\psi)-m_e^2)^2}{4}d\psi=\frac{\pi}{16}s(3s-4m_e^2)+\frac{\pi}{4}s^{3/2}\sqrt{s-4m_e^2}yz\\
&\qquad\qquad-\frac{\pi}{16}s(s-4m_e^2)(y^2+z^2)+\frac{3\pi}{16}s(s-4m_e^2)y^2z^2\,,\notag\\
&\int_0^{2\pi} \frac{(m_e^2-t(\psi))^2}{4}d\psi=\frac{\pi}{16}s(3s-4m_e^2)-\frac{\pi}{4}s^{3/2}\sqrt{s-4m_e^2}yz\notag\\
&\qquad\qquad-\frac{\pi}{16}s(s-4m_e^2)(y^2+z^2)+\frac{3\pi}{16}s(s-4m_e^2)y^2z^2\,,\notag\\
&\int_0^{2\pi} m_e^2\frac{s}{2} d\psi=\pi m_e^2s\,.\notag
\int_0^{2\pi}\frac{(s+t(\psi)-m_e^2)^2}{4}d\psi=&\frac{\pi}{16}s(3s-4m_e^2)+\frac{\pi}{4}s^{3/2}\sqrt{s-4m_e^2}yz
-\frac{\pi}{16}s(s-4m_e^2)(y^2+z^2)+\frac{3\pi}{16}s(s-4m_e^2)y^2z^2\,,\\
\int_0^{2\pi} \frac{(m_e^2-t(\psi))^2}{4}d\psi=&\frac{\pi}{16}s(3s-4m_e^2)-\frac{\pi}{4}s^{3/2}\sqrt{s-4m_e^2}yz
-\frac{\pi}{16}s(s-4m_e^2)(y^2+z^2)+\frac{3\pi}{16}s(s-4m_e^2)y^2z^2\,,\notag\\
\int_0^{2\pi} m_e^2\frac{s}{2} d\psi=&\pi m_e^2s\,.\notag
\end{align}
Therefore
\begin{align}
&\int_0^{2\pi} S |\mathcal{M}|^2 (s,t(\psi))d\psi\\
=&\frac{\pi}{16}s[3s(A+B)+4m_e^2(4C-A-B)]+\frac{\pi}{4}s^{3/2}\sqrt{s-4m_e^2}(A-B)yz\notag\\
&-\frac{\pi}{16}s(s-4m_e^2)(A+B)(y^2+z^2)+\frac{3\pi}{16}s(s-4m_e^2)(A+B)y^2z^2\notag\\
\equiv& \pi q(m_e,s,y,z)\,,\notag
\int_0^{2\pi} S |\mathcal{M}|^2 (s,t(\psi))d\psi
=&\frac{\pi}{16}s[3s(A+B)+4m_e^2(4C-A-B)]+\frac{\pi}{4}s^{3/2}\sqrt{s-4m_e^2}(A-B)yz\\
&-\frac{\pi}{16}s(s-4m_e^2)(A+B)(y^2+z^2)+\frac{3\pi}{16}s(s-4m_e^2)(A+B)y^2z^2
\equiv \pi q(m_e,s,y,z)\,,\notag
\end{align}
and hence
\begin{align}
Expand Down Expand Up @@ -548,8 +548,8 @@ \subsection{Electron and neutrino collision integrals}\label{nu:matrix:elements}

Finally, we point out how the vanishing of these inner products is a reflection of certain conservation laws. From \req{n:div}, \req{collision:integrals}, and the fact that $\hat\psi_0,\hat\psi_1$ span the space of polynomials of degree $\leq 1$, we have the following expressions for the change in number density and energy density of a massless particle
\begin{align}
\frac{1}{a^3} \frac{d}{dt}(a^3n)=&\frac{g_p}{2\pi^2}\int \frac{1}{E}C[f]p^2dp=c_0 R_0\,,\\
\frac{1}{a^4}\frac{d}{dt}(a^4\rho)=&\frac{g_p}{2\pi^2}\int C[f] p^2dp=d_0R_0+d_1R_1\,,\notag
\frac{1}{a^3} \frac{d}{dt}(a^3n)= \frac{g_p}{2\pi^2}\int \frac{1}{E}C[f]p^2dp=c_0 R_0\,,\qquad
\frac{1}{a^4}\frac{d}{dt}(a^4\rho)= \frac{g_p}{2\pi^2}\int C[f] p^2dp=d_0R_0+d_1R_1\,,
\end{align}
for some $c_0,d_0,d_1$. Therefore, the vanishing of $R_0$ is equivalent to conservation of comoving particle number. The vanishing of $R_0$ and $R_1$ implies $\rho\propto 1/a^4$ i.e. that the reduction in energy density is due entirely to redshift; energy is not lost from the distribution due to scattering. These findings match the situations above where we found one or both of $R_0=0$, $R_1=0$. $R_0$ vanished for all kinetic scattering processes and we know that all such processes conserve comoving particle number. Both $R_0$ and $R_1$ vanished for a distribution scattering from itself and in such a process there is no energy loss energy from the distribution by scattering; energy is only redistributed among the particles corresponding to that distribution.

Expand Down Expand Up @@ -609,27 +609,27 @@ \subsection{Comparison with an alternative method for computing scattering integ
These expressions are symmetric under $1\leftrightarrow 2$ and $3\leftrightarrow 4$ and so without loss of generality we can assume $p_1\geq p_2$, $p_3\geq p_4$. We require $p_1\leq p_2+p_3+p_4$ (and cyclic permutations) by conservation of energy. In the case where the above conditions all hold, we separate the computation into four additional cases in which the integrals can be evaluated analytically, as in \cite{Dolgov:1997mb,Dolgov:1998sf}:\\
${\bf p_1+p_2>p_3+p_4\text{, \hspace{1mm} }p_1+p_4>p_2+p_3}${\bf :}
\begin{align}
D_1=&\frac{\pi}{8}(p_2+p_3+p_4-p_1)\,,\\
D_2=&\frac{\pi}{48}((p_1-p_2)^3+2(p_3^3+p_4^3)-3(p_1-p_2)(p_3^2+p_4^2)\,,\notag\\
D_1=&\frac{\pi}{8}(p_2+p_3+p_4-p_1)\,,\qquad
D_2=\frac{\pi}{48}((p_1-p_2)^3+2(p_3^3+p_4^3)-3(p_1-p_2)(p_3^2+p_4^2)\,, \\
D_3=&\frac{\pi}{240}(p_1^5-p_2^5+5p_2^3(p_3^2+p_4^2)-5p_1^3(p_2^2+p_3^2+p_4^2)-(p_3+p_4)^3(p_3^2-3p_3p_4+p_4^2)\notag\\
&\hspace{7mm}+5p_2^2(p_3^3+p_4^3)+5p_1^2(p_2^3+p_3^3+p_4^3))\,.\notag
\end{align}
${\bf p_1+p_2<p_3+p_4\text{, \hspace{1mm} }p_1+p_4>p_2+p_3}${\bf :}
\begin{align}
D_1=&\frac{\pi }{4}p_2\,,\\
D_2=&\frac{\pi }{24}p_2(3(p_3^2+p_4^2-p_1^2)-p_2^2)\,,\notag\\
D_3=&\frac{\pi}{120}p_2^3(5(p_1^2+p_3^2+p_4^2)-p_2^2)\,.\notag
D_1= \frac{\pi }{4}p_2\,,\qquad
D_2= \frac{\pi }{24}p_2(3(p_3^2+p_4^2-p_1^2)-p_2^2)\,,\qquad
D_3= \frac{\pi}{120}p_2^3(5(p_1^2+p_3^2+p_4^2)-p_2^2)\,.
\end{align}
${\bf p_1+p_2>p_3+p_4\text{, \hspace{1mm} }p_1+p_4<p_2+p_3}${\bf :}
\begin{align}
D_1=&\frac{\pi }{4}p_4\,,\\
D_2=&\frac{\pi}{12} p_4^3\,,\notag\\
D_3=&\frac{\pi }{120}p_4^3(5(p_1^2+p_2^2+p_3^2)-p_4^2)\,.\notag
D_1= \frac{\pi }{4}p_4\,,\qquad
D_2= \frac{\pi}{12} p_4^3\,,\qquad
D_3= \frac{\pi }{120}p_4^3(5(p_1^2+p_2^2+p_3^2)-p_4^2)\,.
\end{align}
${\bf p_1+p_2<p_3+p_4\text{, \hspace{1mm} }p_1+p_4<p_2+p_3}${\bf :}
\begin{align}
D_1=&\frac{\pi}{8}(p_1+p_2+p_4-p_3)\,,\\
D_2=&\frac{\pi}{48}(-(p_1+p_2)^3-2p_3^3+2p_4^3+3(p_1+p_2)(p_3^2+p_4^2))\,,\notag\\
D_1=&\frac{\pi}{8}(p_1+p_2+p_4-p_3)\,,\qquad
D_2= \frac{\pi}{48}(-(p_1+p_2)^3-2p_3^3+2p_4^3+3(p_1+p_2)(p_3^2+p_4^2))\,, \\
D_3=&\frac{\pi}{240}(p_3^5-p_4^5-(p_1+p_2)^3(p_1^2-3p_1p_2+p_2^2)+5(p_1^3+p_2^3)p_3^2-5(p_1^2+p_2^2)p_3^3\notag\\
&\hspace{7mm}+5(p_1^3+p_2^3-p_3^3)p_4^2+5(p_1^2+p_2^2+p_3^2)p_4^3)\,.\notag
\end{align}
Expand Down

0 comments on commit b653281

Please sign in to comment.