Skip to content

El objetivo principal de este estudio consiste en aplicar algoritmos como Regresión Logística y K-Nearest Neighbors (KNN) en los dos conjuntos de datos de clasificación binaria, al igual que explorar, analizar y evaluar el rendimiento de estos modelos.

Notifications You must be signed in to change notification settings

aleedca/PrimerProyectoIA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 

Repository files navigation

PrimerProyectoIA

Curso Inteligencia Artificial IIS2024 Instituto Tecnológico de Costa Rica

Abstract

This study explores the application of machine learning algorithms for predicting two prevalent medical conditions: diabetes and anemia. Using logistic regression and K-nearest neighbors (KNN), we applied these models to two separate datasets for binary classification. For the diabetes dataset, logistic regression, enhanced by ElasticNet regularization, outperformed KNN in overall accuracy, precision, and recall, with an AUC-ROC of 0.8728. Meanwhile, KNN demonstrated high recall but was more prone to overfitting. In the anemia dataset, both models yielded strong performance, but logistic regression showed superior stability and reduced risk of overfitting when applied to the balanced dataset using synthetic minority oversampling (SMOTE). The findings support logistic regression as the more reliable model for clinical predictions, while KNN requires careful tuning to avoid overfitting.

Members

Daniela Alvarado Andrade Ingeniería en Computación - 2021004342 - dani.alvarado@estudiantec.cr

Alexia Denisse Cerdas Aguilar Ingeniería en Computación - 2019026961 - acerdas1701@estudiantec.cr

About

El objetivo principal de este estudio consiste en aplicar algoritmos como Regresión Logística y K-Nearest Neighbors (KNN) en los dos conjuntos de datos de clasificación binaria, al igual que explorar, analizar y evaluar el rendimiento de estos modelos.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published