Skip to content

All Classical Machine Learning Algorithms and respective Case Study for each algo type.

Notifications You must be signed in to change notification settings

anidec25/ML-Projects

Repository files navigation

Topics and Case Study

Linear Regression Topics

  • LR Introduction
  • LR Cost function
  • Gradient descent Code
  • Cross validation
  • Regularisation
  • Evaluation Metrics

Logistics Regression

  • Logistic Regression Introduction
  • Sigmoid Function
  • Logistic Regression Cost function
  • Gradient descent Code
  • Cross validation
  • Evaluation Metrics

Decision Tree

  • Introductory code for DT
  • Mathematical Intuition

Ensemble Techniques

  • Bagging: Random Forest
  • Boosting: GBDT, XGBoost, AdaBoost, CatBoost
  • Stacking
  • Cascading

Naive Bayes

  • Mathematical Intuition
  • Model Development
  • Advantages and Disadvantages

Clustering

  • K-Means
  • Hierarchial
  • GMM
  • DBSCAN

Recommender System

  • Apriori
  • Content Based recommender System
  • Collaborative filtering
  • Matrix Factorization
  • Evaluating RS

Time Series

  • Forcasting
  • Handling Missing Data and Anomalies
  • Time Series decomposition
  • Train Test Split and Measure of Forecast accuracy
  • Simple Forcast Method
  • Smoothing based methods
  • Stationary
  • ACF and PACF
  • ARIMA Family and Facebook's Prophet