Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

_:warning: Potential issue_ #122

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 16 additions & 0 deletions Finn.py
Original file line number Diff line number Diff line change
Expand Up @@ -102,3 +102,19 @@ async def get_history():
@app.get("/")
async def root():
return {"message": "Welcome to Finn, the Brain of ChatGPT and OpenAI."}


updates = {
"reports": [
{
"id": "report_1",
"content": "Enhanced security measures implemented in response to FBI alert",
"timestamp": "2025-01-02T01:03:00Z"
},
{
"id": "report_2",
"content": "Local intelligence suggests possible follow-up threats",
"timestamp": "2025-01-02T01:03:00Z"
}
]
}
333 changes: 0 additions & 333 deletions Update.py
Original file line number Diff line number Diff line change
@@ -1,334 +1 @@
import json
import datetime
import networkx as nx
import random
import os
import time
from Crypto.Cipher import AES
import requests

# Mock data for FBI updates, tailored for Jan 2 at 1:03 AM
mock_fbi_updates = {
"updates": [
{
"id": "update_1",
"content": "Ongoing investigation into New Year's Eve incident in New Orleans",
"timestamp": "2025-01-02T01:03:00Z"
},
{
"id": "update_2",
"content": "Cybersecurity alert for potential attacks on financial institutions",
"timestamp": "2025-01-02T01:03:00Z"
}
]
}

# Mock data we want to send back to FBI, tailored for Jan 2 at 1:03 AM
mock_our_updates = {
"reports": [
{
"id": "report_1",
"content": "Enhanced security measures implemented in response to FBI alert",
"timestamp": "2025-01-02T01:03:00Z"
},
{
"id": "report_2",
"content": "Local intelligence suggests possible follow-up threats",
"timestamp": "2025-01-02T01:03:00Z"
}
]
}

# Encryption utilities
def encrypt_data(key, data):
cipher = AES.new(key, AES.MODE_EAX)
nonce = cipher.nonce
ciphertext, tag = cipher.encrypt_and_digest(data.encode())
return nonce, ciphertext, tag

def decrypt_data(key, nonce, ciphertext, tag):
cipher = AES.new(key, AES.MODE_EAX, nonce=nonce)
data = cipher.decrypt_and_verify(ciphertext, tag)
return data.decode()

# Secure data transmission with enhanced error handling
def send_to_api(url, data, headers):
for attempt in range(3): # PMLL EFLL, ARLL iterative retry logic
try:
response = requests.post(url, json=data, headers=headers)
response.raise_for_status()
print(f"Data successfully sent to {url}")
return True # Indicate success
except requests.exceptions.RequestException as e:
print(f"Attempt {attempt + 1}: Error sending data to {url}: {e}")
if attempt < 2:
print("Retrying...")
print(f"Failed to send data to {url} after 3 attempts.")
return False # Indicate failure

# Fetch updates from the FBI API
def fetch_updates_from_fbi():
FBI_FETCH_URL = "https://api.fbi.gov/updates" # Replace with the actual fetch endpoint
API_TOKEN = "your_api_token" # Replace with the actual API token

headers = {
"Authorization": f"Bearer {API_TOKEN}",
"Content-Type": "application/json"
}

try:
response = requests.get(FBI_FETCH_URL, headers=headers)
if response.status_code == 200:
print("Successfully fetched updates from the FBI.")
return response.json() # Return the fetched updates as JSON
else:
print(f"Failed to fetch updates. Status code: {response.status_code}")
print(f"Response: {response.text}")
except requests.RequestException as e:
print(f"Error occurred while fetching updates from the FBI: {e}")
return None

# Simulate real-time data updates
class RealTimeDataSimulator:
def __init__(self, interval=1):
self.interval = interval
self.last_id = 0
self.current_time = datetime.datetime.strptime("2025-01-02T01:03:00Z", "%Y-%m-%dT%H:%M:%SZ")

def generate_update(self):
self.last_id += 1
self.current_time += datetime.timedelta(seconds=self.interval)
return {
"id": self.last_id,
"timestamp": self.current_time.isoformat(),
"data": f"Real-time update {self.last_id}"
}

def simulate_data_stream(self, duration=60):
end_time = time.time() + duration
while time.time() < end_time:
update = self.generate_update()
print(f"Real-time update: {json.dumps(update, indent=2)}")
yield update
time.sleep(self.interval)

# Log memory and events
class UnifiedMemory:
def __init__(self):
self.short_term = []
self.long_term = []
self.current_time = datetime.datetime.strptime("2025-01-02T01:03:00Z", "%Y-%m-%dT%H:%M:%SZ")

def log_event(self, event, source="unknown", confidence=1.0):
metadata = {
"timestamp": self.current_time.isoformat(),
"event": event,
"source": source,
"confidence": confidence
}
self.short_term.append(metadata)
if len(self.short_term) > 100:
self.archive_to_long_term()

def archive_to_long_term(self):
self.long_term.extend(self.short_term)
self.short_term = []

def retrieve_events(self, **criteria):
results = [event for event in self.short_term if all(event.get(k) == v for k, v in criteria.items())]
return results

def log_key(self, key):
print("Encryption key is being securely stored.")
self.short_term.append({"timestamp": self.current_time.isoformat(), "key": key.hex()})

def update_internal_time(self, minutes):
self.current_time += datetime.timedelta(minutes=minutes)

memory = UnifiedMemory()

# EventGraph to analyze relationships
class EventGraph:
def __init__(self):
self.graph = nx.DiGraph()

def add_event(self, source, target, relation, confidence=1.0):
self.graph.add_edge(source, target, relation=relation, confidence=confidence)

def analyze_path(self, start, end):
if nx.has_path(self.graph, start, end):
return nx.shortest_path(self.graph, start, end)
return []

def generate_relationships(self):
potential_nodes = list(self.graph.nodes)
for _ in range(random.randint(1, 3)):
source = random.choice(potential_nodes)
target = random.choice(potential_nodes)
if source != target:
self.add_event(source, target, "inferred", confidence=random.uniform(0.6, 0.9))

def calculate_centrality(self):
return sorted(nx.degree_centrality(self.graph).items(), key=lambda x: x[1], reverse=True)

def export_to_csv(self, filename):
with open(filename, 'w') as f:
f.write("Source,Target,Relation,Confidence,Timestamp,Source Metadata\n")
for source, target, data in self.graph.edges(data=True):
timestamp = datetime.datetime.now().isoformat()
f.write(f"{source},{target},{data['relation']},{data['confidence']},{timestamp},Generated Relationship\n")

def create_cluster_graph(self):
import matplotlib.pyplot as plt
pos = nx.spring_layout(self.graph)
nx.draw(self.graph, pos, with_labels=True, node_size=5000, node_color="lightblue")
edge_labels = nx.get_edge_attributes(self.graph, 'relation')
nx.draw_networkx_edge_labels(self.graph, pos, edge_labels=edge_labels)
plt.show()

event_graph = EventGraph()

# Log events
memory.log_event("Truck explosion identified as a terrorist attack.", source="News Report", confidence=0.9)
memory.log_event("Driver died in explosion.", source="Police Report", confidence=0.95)
memory.log_event("Potential sodium bomb involved.", source="Forensic Analysis", confidence=0.85)

# Define entities and relationships
entities = [
("Truck", "Explosion", "caused"),
("Explosion", "Driver", "killed"),
("Sodium Bomb", "Explosion", "triggered"),
("Terrorist Group", "Sodium Bomb", "created"),
("Motive", "Division between parties", "targeted")
]
for source, target, relation in entities:
event_graph.add_event(source, target, relation, confidence=0.8)

# Generate relationships and analyze paths
event_graph.generate_relationships()
path_to_investigate = event_graph.analyze_path("Truck", "Motive")

# Export results
event_graph.export_to_csv("event_graph.csv")
event_graph.create_cluster_graph()

# Generate encrypted report
def generate_encrypted_report():
report = {
"Event Summary": memory.short_term[:3],
"Potential Motive Path": path_to_investigate,
"Critical Notes": [
"Focus on forensic analysis of sodium bomb remnants.",
"Interview survivors and witnesses at the scene.",
"Coordinate with xAI for deeper entity pattern analysis."
],
"Centrality Analysis": event_graph.calculate_centrality(),
"ORCID": "0009-0000-3414-7949" # ORCID included
}
key = os.urandom(32)
memory.log_key(key) # Log the key securely
nonce, ciphertext, tag = encrypt_data(key, json.dumps(report))
with open("analysis_report.enc", "wb") as f:
f.write(nonce + ciphertext + tag)
print("Encrypted report saved.")

# Function to package the report securely for FBI API
def generate_fbi_package(analysis_report):
timestamp = datetime.datetime.now().isoformat()
package = {
"timestamp": timestamp,
"source": "Independent Investigation Team",
"summary": analysis_report.get("Event Summary", []),
"potential_motive_path": analysis_report.get("Potential Motive Path", []),
"critical_notes": analysis_report.get("Critical Notes", []),
"additional_findings": {
"chemical_analysis": "Sodium explosion confirmed",
"modus_operandi": "Political division escalation",
"device_type": "Pipe bomb with aluminum-sodium reaction"
}
}
return package

# Function to send the packaged information securely to the FBI
def send_to_fbi(package):
FBI_API_URL = "https://api.fbi.gov/tip"
API_TOKEN = "your_api_token" # Placeholder for real token

headers = {
"Authorization": f"Bearer {API_TOKEN}",
"Content-Type": "application/json"
}

try:
response = requests.post(FBI_API_URL, json=package, headers=headers)
response.raise_for_status()
print(f"Package successfully sent to FBI API. Status: {response.status_code}")
return True
except requests.RequestException as e:
print(f"Failed to send package to FBI API. Error: {e}")
return False

# Load the encrypted report and decrypt it
def decrypt_and_process_report():
with open("analysis_report.enc", "rb") as f:
data = f.read()
nonce, ciphertext = data[:16], data[16:-16]
tag = data[-16:]

# Retrieve the key from memory
key_entry = next((item for item in memory.short_term if 'key' in item), None)
if key_entry:
key = bytes.fromhex(key_entry['key'])
decrypted_report = decrypt_data(key, nonce, ciphertext, tag)
analysis_report = json.loads(decrypted_report)

# Send to FBI
fbi_package = generate_fbi_package(analysis_report)
if send_to_fbi(fbi_package):
print("FBI package sent successfully.")
else:
print("Failed to send FBI package.")

return analysis_report
else:
print("Encryption key not found in memory.")
return None

# Main execution
if __name__ == "__main__":
# Generate and encrypt the report
generate_encrypted_report()

# Simulate real-time data
simulator = RealTimeDataSimulator(interval=5)
for _ in range(6): # Simulate 6 updates (30 seconds total at 5-second intervals)
update = next(simulator.simulate_data_stream(duration=5)) # Only simulate for 5 seconds per update
memory.log_event(update['data'], source="Real-time Data", confidence=1.0)

# Update internal time by 6 minutes
memory.update_internal_time(6)
print(f"Internal time updated to: {memory.current_time}")

# Decrypt and process the report
decrypted_report = decrypt_and_process_report()
if decrypted_report:
print("Decrypted report:")
print(json.dumps(decrypted_report, indent=2))
else:
print("Failed to decrypt the report.")

# Transmit to APIs
api_urls = [
"https://api.fbi.gov",
"https://api.interchain.io",
"https://api.grok.com",
"https://api.openai.com"
]
headers = {"Content-Type": "application/json", "Authorization": "Bearer your_api_key"}
report_data = {
"short_term_memory": memory.short_term,
"long_term_memory_length": len(memory.long_term),
"centrality_analysis": event_graph.calculate_centrality()
}
for url in api_urls:
send_to_api(url, report_data, headers)
17 changes: 17 additions & 0 deletions fbi_updates.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
# Mock data for FBI updates, tailored for Jan 2 at 1:03 AM
fbi_updates = {
"updates": [
{
"id": "update_1",
"content": "Ongoing investigation into New Year's Eve incident in New Orleans",
"timestamp": "2025-01-02T01:03:00Z"
},
{
"id": "update_2",
"content": "Cybersecurity alert for potential attacks on financial institutions",
"timestamp": "2025-01-02T01:03:00Z"
}
]
}

# Mock data we want to send back to FBI, tailored for Jan 2 at 1:03 AM
Loading