Skip to content

cgalaz01/self_contrastive_mwr

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Multi-Tiered Self-Contrastive Learning for Medical Microwave Radiometry (MWR) Breast Cancer Detection

Setup

To set up the project, follow these steps:

  1. Install Anaconda from the official website: Anaconda.

  2. Clone the repository to your local machine:

    git clone https://github.com/cgalaz01/self_contrastive_mwr.git
    
  3. Navigate to the project directory:

    cd self_contrastive_mwr
    
  4. Create a new conda environment using the provided environment.yml file:

    conda env create -f environment.yml
    
  5. Activate the conda environment:

    conda activate self_contrastive_mwr
    

Model Training

To train and evaluate a model run the Python script 'run_trianing.py':

  1. Navigate to the project's source code.

    cd src
    
  2. Run the Python script with the desired command-line arguments. For example, to run the script with the default values for model_type and contrastive_type, use the following command:

    python run_training.py
    
  3. If you want to specify different values for the arguments, use the --model_type (either 'base', 'local', 'regional', 'global' or 'joint') and --contrastive_type (either 'none', 'contrastive', 'triplethard', 'tripletsemihard' or 'npairs') flags followed by the desired values. Note: 'joint' model expects the respective 'local', 'regional' and 'global' models to be trained first. For example:

    python run_training.py --model_type local --contrastive_type none
    

Contributing

Contributions are welcome! Here's how you can contribute to the project:

  1. Fork the repository.
  2. Create a new branch: git checkout -b feature/your-feature-name.
  3. Make your changes and commit them: git commit -m 'Add some feature'.
  4. Push to the branch: git push origin feature/your-feature-name.
  5. Open a pull request.

License

This project is licensed under the MIT License. See the LICENSE file for more information.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages