Multi-Tiered Self-Contrastive Learning for Medical Microwave Radiometry (MWR) Breast Cancer Detection
To set up the project, follow these steps:
-
Install Anaconda from the official website: Anaconda.
-
Clone the repository to your local machine:
git clone https://github.com/cgalaz01/self_contrastive_mwr.git
-
Navigate to the project directory:
cd self_contrastive_mwr
-
Create a new conda environment using the provided
environment.yml
file:conda env create -f environment.yml
-
Activate the conda environment:
conda activate self_contrastive_mwr
To train and evaluate a model run the Python script 'run_trianing.py':
-
Navigate to the project's source code.
cd src
-
Run the Python script with the desired command-line arguments. For example, to run the script with the default values for
model_type
andcontrastive_type
, use the following command:python run_training.py
-
If you want to specify different values for the arguments, use the
--model_type
(either 'base', 'local', 'regional', 'global' or 'joint') and--contrastive_type
(either 'none', 'contrastive', 'triplethard', 'tripletsemihard' or 'npairs') flags followed by the desired values. Note: 'joint' model expects the respective 'local', 'regional' and 'global' models to be trained first. For example:python run_training.py --model_type local --contrastive_type none
Contributions are welcome! Here's how you can contribute to the project:
- Fork the repository.
- Create a new branch:
git checkout -b feature/your-feature-name
. - Make your changes and commit them:
git commit -m 'Add some feature'
. - Push to the branch:
git push origin feature/your-feature-name
. - Open a pull request.
This project is licensed under the MIT License. See the LICENSE file for more information.