Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

⚡️ Speed up function sorter by 91% #221

Open
wants to merge 1 commit into
base: main
Choose a base branch
from

Conversation

codeflash-ai[bot]
Copy link

@codeflash-ai codeflash-ai bot commented Mar 3, 2025

📄 91% (0.91x) speedup for sorter in src/bubble_sort.py

⏱️ Runtime : 1.85 second 969 milliseconds (best of 9 runs)

📝 Explanation and details

Certainly! The current code is an implementation of the Bubble Sort algorithm, which is not very efficient with a time complexity of O(n^2). We can improve the speed significantly by using the built-in sort method in Python, which uses Timsort with an average time complexity of O(n log n).

Here’s the optimized code.

The sorted function returns a new sorted list while maintaining the original list unchanged. If you need to sort the list in place and not return a new list, you can use the sort method on the list itself.

Both methods are much faster and efficient compared to the original Bubble Sort implementation.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 2 Passed
🌀 Generated Regression Tests 41 Passed
⏪ Replay Tests 2 Passed
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
⚙️ Existing Unit Tests Details
- benchmarks/test_benchmark_sort.py
- benchmarks/test_plugin_py__replay_test_0.py
- benchmarks/test_plugin_py__replay_test_1.py
- test_sort.py
🌀 Generated Regression Tests Details
import random  # used for generating large random lists

# imports
import pytest  # used for our unit tests
from src.bubble_sort import sorter

# unit tests

def test_empty_list():
    # Test with an empty list
    codeflash_output = sorter([])

def test_single_element_list():
    # Test with a single element list
    codeflash_output = sorter([1])

def test_already_sorted_list():
    # Test with an already sorted list
    codeflash_output = sorter([1, 2, 3, 4, 5])
    codeflash_output = sorter([-5, -3, -1, 0, 2, 4])

def test_reverse_sorted_list():
    # Test with a reverse sorted list
    codeflash_output = sorter([5, 4, 3, 2, 1])
    codeflash_output = sorter([10, 9, 8, 7, 6])

def test_unsorted_list():
    # Test with an unsorted list
    codeflash_output = sorter([3, 1, 4, 1, 5, 9])
    codeflash_output = sorter([10, -1, 2, 8, 0])

def test_list_with_duplicates():
    # Test with a list containing duplicate elements
    codeflash_output = sorter([4, 2, 2, 3, 1])
    codeflash_output = sorter([5, 5, 5, 5, 5])

def test_list_with_negative_numbers():
    # Test with a list containing negative numbers
    codeflash_output = sorter([-3, -1, -4, -2, 0])
    codeflash_output = sorter([3, -1, 4, -1, 5, -9])

def test_list_with_mixed_data_types():
    # Test with a list containing mixed data types (integers and floats)
    codeflash_output = sorter([3.5, 2, 4.0, 1.5, 3])
    codeflash_output = sorter([1, 2.2, 3.3, 0.5])

def test_large_list():
    # Test with a large list of random integers
    large_list = random.sample(range(1000), 1000)
    sorted_large_list = sorted(large_list)
    codeflash_output = sorter(large_list)

def test_edge_cases():
    # Test with a list where all elements are the same
    codeflash_output = sorter([7, 7, 7, 7, 7])
    # Test with a list containing only two elements
    codeflash_output = sorter([2, 1])
    codeflash_output = sorter([1, 2])

def test_performance_and_scalability():
    # Test the function's performance with very large inputs
    very_large_list = random.sample(range(1000), 1000)
    sorted_very_large_list = sorted(very_large_list)
    codeflash_output = sorter(very_large_list)
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

import pytest  # used for our unit tests
from src.bubble_sort import sorter

# unit tests

# Basic Functionality
def test_basic_functionality():
    codeflash_output = sorter([3, 2, 1])
    codeflash_output = sorter([5, 3, 8, 4, 2])

# Already Sorted List
def test_already_sorted():
    codeflash_output = sorter([1, 2, 3, 4, 5])
    codeflash_output = sorter([10, 20, 30, 40, 50])

# Reverse Sorted List
def test_reverse_sorted():
    codeflash_output = sorter([5, 4, 3, 2, 1])
    codeflash_output = sorter([100, 50, 20, 10, 5])

# Single Element List
def test_single_element():
    codeflash_output = sorter([1])
    codeflash_output = sorter([42])

# Empty List
def test_empty_list():
    codeflash_output = sorter([])

# List with Duplicate Elements
def test_duplicates():
    codeflash_output = sorter([4, 2, 2, 3, 1])
    codeflash_output = sorter([5, 3, 5, 3, 5])

# List with Negative Numbers
def test_negative_numbers():
    codeflash_output = sorter([3, -1, 2, -5, 0])
    codeflash_output = sorter([-10, -20, -30, -5, -15])

# List with Mixed Positive and Negative Numbers
def test_mixed_numbers():
    codeflash_output = sorter([3, -1, 2, -5, 0, 7, -3])
    codeflash_output = sorter([-10, 20, -30, 5, -15, 25])

# List with Floating Point Numbers
def test_floating_point_numbers():
    codeflash_output = sorter([3.1, 2.2, 1.3])
    codeflash_output = sorter([5.5, 3.3, 8.8, 4.4, 2.2])

# List with Integers and Floating Point Numbers
def test_mixed_integers_floats():
    codeflash_output = sorter([3, 1.1, 2, 4.4, 0])
    codeflash_output = sorter([5.5, 3, 8, 4.4, 2])

# Large List
def test_large_list():
    large_list = list(range(1000, 0, -1))
    sorted_large_list = list(range(1, 1001))
    codeflash_output = sorter(large_list)

# List with Repeated Elements
def test_repeated_elements():
    codeflash_output = sorter([1, 1, 1, 1, 1])
    codeflash_output = sorter([5, 5, 5, 5, 5])

# Run the tests
if __name__ == "__main__":
    pytest.main()
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

To edit these changes git checkout codeflash/optimize-sorter-m7to32nz and push.

Codeflash

Certainly! The current code is an implementation of the Bubble Sort algorithm, which is not very efficient with a time complexity of O(n^2). We can improve the speed significantly by using the built-in `sort` method in Python, which uses Timsort with an average time complexity of O(n log n). 

Here’s the optimized code.



The `sorted` function returns a new sorted list while maintaining the original list unchanged. If you need to sort the list in place and not return a new list, you can use the `sort` method on the list itself.



Both methods are much faster and efficient compared to the original Bubble Sort implementation.
@codeflash-ai codeflash-ai bot added the ⚡️ codeflash Optimization PR opened by CodeFlash AI label Mar 3, 2025
@codeflash-ai codeflash-ai bot requested a review from alvin-r March 3, 2025 23:04
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
⚡️ codeflash Optimization PR opened by CodeFlash AI
Projects
None yet
Development

Successfully merging this pull request may close these issues.

0 participants