Skip to content

cpheidelberg/proj-dcgan-histology-pytorch

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

35 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DCGAN in PyTorch for Histopathological Image Generation

This repository implements a DCGAN (Deep Convolutional Generative Adversarial Network) for generating histopathological images, specifically glomerulus pathologies of the kidney represented by 12 classes. The code is adapted from Chapter 4 & 5 of Hands-on Generative Adversarial Networks with PyTorch 1.0 by Hany, J. & Walters, G. (2019).

Prerequisites

  • Linux OS
  • Python 3
  • CPU or NVIDIA GPU + CUDA CuDNN

Getting Started

Installation

  • Clone this repository:

    git clone https://github.com/m4ln/pytorch_dcgan.git
    cd pytorch_dcgan
  • Install dependencies via pip

    pip install -r requirements.txt
    

    Note: It might be necessary to install PyTorch manually from https://pytorch.org/get-started/locally/

Training

  • If no input arguments are provided, the model is trained on the MNIST dataset
    python train.py
  • To train on your own data, provide the arguments via argparse (check inside train.py)
  • The directory to your input data should contain a subfolder of images for each class

Generating Fake Samples/Testing

  • To generate new samples, run (by default using the MNIST trained model as in train.py):
    python test.py
  • To test on your own data, provide the arguments via argparse (check inside test.py)

Citation

If you use this project for your research, please cite our paper.

@article{weis2022assessment,
  title={Assessment of glomerular morphological patterns by deep learning algorithms},
  author={Weis, Cleo-Aron and Bindzus, Jan Niklas and Voigt, Jonas and Runz, Marlen and Hertjens, Svetlana and Gaida, Matthias M and Popovic, Zoran V and Porubsky, Stefan},
  journal={Journal of Nephrology},
  volume={35},
  number={2},
  pages={417--427},
  year={2022},
  doi = {10.11588/data/8LKEZF},
  publisher={Springer}
}

About

DCGAN in PyTorch for Histopathological Image Generation

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%