统计学习理论与方法
CS7304H-033 ├── DANN ├── Datasets ├── DecisionTree ├── KNN ├── LogisticRegression ├── RandomForest ├── SVM ├── utils ├── init.py ├── requirements.txt └── README.md
python 3.8
pip install -r requirements.txt
经测试,SVM和DANN方法效果相对较好,如需测试可按照下面步骤,输出相应预测文件
运行前需按照下列文件夹结构导入训练/测试集 Datasets ├── test.csv └── train.csv
cd CS7304H-033
-
Logistic Regression
python LogisticRegression/lr.py
-
Support Vector Machine
python SVM/SVM_with_pca.py
-
K-Nearest Neighbors
python KNN/knn_with_pca.py
-
Decision Tree 时间开销较长
python DecisionTree/dt.py
-
Random Forest
python RandomForest/rf_with_pca.py
可使用此方式训练,训练结束后会输出测试集的预测结果
python DANN/train.py