Skip to content

dazazh/CS7304H-033

Repository files navigation

CS7304H-033

统计学习理论与方法

文件结构

CS7304H-033 ├── DANN ├── Datasets ├── DecisionTree ├── KNN ├── LogisticRegression ├── RandomForest ├── SVM ├── utils ├── init.py ├── requirements.txt └── README.md

运行环境:

python 3.8 pip install -r requirements.txt 经测试,SVM和DANN方法效果相对较好,如需测试可按照下面步骤,输出相应预测文件

数据集:

运行前需按照下列文件夹结构导入训练/测试集 Datasets ├── test.csv └── train.csv

四种传统模型:

cd CS7304H-033

  1. Logistic Regression python LogisticRegression/lr.py

  2. Support Vector Machine python SVM/SVM_with_pca.py

  3. K-Nearest Neighbors python KNN/knn_with_pca.py

  4. Decision Tree 时间开销较长 python DecisionTree/dt.py

  5. Random Forest python RandomForest/rf_with_pca.py

深度学习方法(DANN)

可使用此方式训练,训练结束后会输出测试集的预测结果 python DANN/train.py

About

统计学习理论与方法

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages