Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Port search_documents_by_keywords to C-Top2Vec #366

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
add c-top2vec support to search_documents_by_keywords
  • Loading branch information
CodingKoopa committed Jan 5, 2025
commit e2c662f9395a3dcdc36c56b876ea1b1bb06e1992
7 changes: 5 additions & 2 deletions top2vec/embedding.py
Original file line number Diff line number Diff line change
@@ -113,9 +113,11 @@ def sliding_window_average(document_token_embeddings, document_tokens, window_si
# Store the averaged embeddings
averaged_embeddings = []
chunk_tokens = []
multi_document_labels = []

# Iterate over each document
for doc, tokens in tqdm(zip(document_token_embeddings, document_tokens)):
for ind, (doc, tokens) in tqdm(enumerate(
zip(document_token_embeddings, document_tokens))):
doc_averages = []

# Slide the window over the document with the specified stride
@@ -137,11 +139,12 @@ def sliding_window_average(document_token_embeddings, document_tokens, window_si
chunk_tokens.append(" ".join(tokens[start:end]))

averaged_embeddings.append(doc_averages)
multi_document_labels.extend([ind] * len(doc_averages))

averaged_embeddings = np.vstack(averaged_embeddings)
averaged_embeddings = normalize(averaged_embeddings)

return averaged_embeddings, chunk_tokens
return averaged_embeddings, chunk_tokens, multi_document_labels


def average_adjacent_tokens(token_embeddings, window_size):
16 changes: 11 additions & 5 deletions top2vec/top2vec.py
Original file line number Diff line number Diff line change
@@ -772,15 +772,18 @@ def __init__(self,
model_max_length=512,
embedding_model=model_name)

averaged_embeddings, chunk_tokens = sliding_window_average(document_token_embeddings,
document_tokens,
window_size=50,
stride=40)
(averaged_embeddings,
chunk_tokens,
multi_document_labels) = sliding_window_average(document_token_embeddings,
document_tokens,
window_size=50,
stride=40)

self.document_token_embeddings = document_token_embeddings
self.document_vectors = averaged_embeddings
self.document_tokens = document_tokens
self.document_labels = document_labels
self.multi_document_labels = multi_document_labels

if not umap_args:
umap_args = {
@@ -2882,7 +2885,6 @@ def search_documents_by_topic(self, topic_num, num_docs, return_documents=True,
else:
return doc_scores, doc_ids

@contextual_top2vec_req(False)
def search_documents_by_keywords(self, keywords, num_docs, keywords_neg=None, return_documents=True,
use_index=False, ef=None):
"""
@@ -2965,6 +2967,10 @@ def search_documents_by_keywords(self, keywords, num_docs, keywords_neg=None, re
combined_vector = self._get_combined_vec(word_vecs, neg_word_vecs)
doc_indexes, doc_scores = self._search_vectors_by_vector(self.document_vectors,
combined_vector, num_docs)
if self.contextual_top2vec:
multi_document_labels = np.array(self.multi_document_labels)
doc_indexes = multi_document_labels[doc_indexes]


doc_ids = self._get_document_ids(doc_indexes)