Skip to content

Figuratenum is the most comprehensive and specialized Python library for figurate numbers, capable of generating up to 233 different sequences across various dimensions and generalizations.

License

Notifications You must be signed in to change notification settings

edelveart/figuratenum

Repository files navigation

FigurateNum

FigurateNum is a collection of 233 figurate number generators based on the book Figurate Numbers by Michel Deza and Elena Deza, published in 2012.

PyPI - Version PyPI - Wheel Pepy Total Downloads PyPI - Status GitHub License

figuratenumber-social-image

What is the purpose of FigurateNum?

FigurateNum facilitates the discovery of new patterns among sequences and enables various numerical calculations in mathematical projects and related applications. It can be integrated with other software to visualize the geometric objects described. Moreover, it serves as a valuable companion to the book.

How to install?

pip install figuratenum

🚨 Version 2.0.0 includes renamed methods and changes in class usage. These changes are incompatible with previous versions. Please review the updated usage instructions below to adapt your code to the new structure.

Features

FigurateNum generates the following categories of infinite sequences:

During the development of this package, errata were identified in Figurate Numbers (2012). The corresponding corrections are available here.

How to use?

1. Import all sequences via the FigurateNum class

from figuratenum import FigurateNum as fgn
>>> seq = fgn()
>>> hyperdodecahedral = seq.hyperdodecahedral()

>>> first = next(hyperdodecahedral)
>>> second = next(hyperdodecahedral)
>>> third = next(hyperdodecahedral)
>>> fourth = next(hyperdodecahedral)

>>> print(first, second, third, fourth)
1 600 4983 19468

2. Import sequences through specialized classes: Plane, Space, and Multidimensional

# from figuratenum import PlaneFigurateNum as pfgn
# from figuratenum import SpacedimensionalFigurateNum as sfgn
from figuratenum import MultidimensionalFigurateNum as mfgn
>>> seq_loop = mfgn()
>>> k_dimensional_centered_hypertetrahedron = seq_loop.k_dimensional_centered_hypertetrahedron(21)

>>> figuratenum_arr = []
>>> for _ in range(1, 15):
>>>     next_num = next(k_dimensional_centered_hypertetrahedron)
>>>     figuratenum_arr.append(next_num)

>>> print(figuratenum_arr)
[1, 23, 276, 2300, 14950, 80730, 376740, 1560780, 5852925, 20160075, 64512240, 193536720, 548354040, 1476337800]

3. Using the NumCollector class for sequence collection

from figuratenum import NumCollector as nc

Importing the NumCollector class allows you to use practical methods to return lists, tuples or arrays with the requested number of elements:

  • take(n)
  • take_to_list(stop, start, step)
  • take_to_array(stop, start, step)
  • take_to_tuple(stop, start, step)
  • pick(n)
>>> seq = fgn()
>>> pentatope = seq.pentatope()

>>> print(nc.take_to_list(pentatope, 10))
[1, 5, 15, 35, 70, 126, 210, 330, 495, 715]

Plane figurate numbers

  1. polygonal
  2. triangular
  3. square
  4. pentagonal
  5. hexagonal
  6. heptagonal
  7. octagonal
  8. nonagonal
  9. decagonal
  10. hendecagonal
  11. dodecagonal
  12. tridecagonal
  13. tetradecagonal
  14. pentadecagonal
  15. hexadecagonal
  16. heptadecagonal
  17. octadecagonal
  18. nonadecagonal
  19. icosagonal
  20. icosihenagonal
  21. icosidigonal
  22. icositrigonal
  23. icositetragonal
  24. icosipentagonal
  25. icosihexagonal
  26. icosiheptagonal
  27. icosioctagonal
  28. icosinonagonal
  29. triacontagonal
  30. centered_triangular
  31. centered_square = diamond numbers
  32. centered_pentagonal
  33. centered_hexagonal
  34. centered_heptagonal
  35. centered_octagonal
  36. centered_nonagonal
  37. centered_decagonal
  38. centered_hendecagonal
  39. centered_dodecagonal = star
  40. centered_tridecagonal
  41. centered_tetradecagonal
  42. centered_pentadecagonal
  43. centered_hexadecagonal
  44. centered_heptadecagonal
  45. centered_octadecagonal
  46. centered_nonadecagonal
  47. centered_icosagonal
  48. centered_icosihenagonal
  49. centered_icosidigonal
  50. centered_icositrigonal
  51. centered_icositetragonal
  52. centered_icosipentagonal
  53. centered_icosihexagonal
  54. centered_icosiheptagonal
  55. centered_icosioctagonal
  56. centered_icosinonagonal
  57. centered_triacontagonal
  58. centered_mgonal(m)
  59. pronic = heteromecic = oblong
  60. polite
  61. impolite
  62. cross
  63. aztec_diamond
  64. polygram(m) = centered_star_polygonal(m)
  65. pentagram
  66. gnomic
  67. truncated_triangular
  68. truncated_square
  69. truncated_pronic
  70. truncated_centered_pol(m) = truncated_centered_mgonal(m)
  71. truncated_centered_triangular
  72. truncated_centered_square
  73. truncated_centered_pentagonal
  74. truncated_centered_hexagonal = truncated_hex
  75. generalized_mgonal(m, start_numb)
  76. generalized_pentagonal(start_numb)
  77. generalized_hexagonal(start_numb)
  78. generalized_centered_pol(m, start_numb)
  79. generalized_pronic(start_numb)

Space figurate numbers

  1. m_pyramidal(m)
  2. triangular_pyramidal
  3. square_pyramidal = pyramidal
  4. pentagonal_pyramidal
  5. hexagonal_pyramidal
  6. heptagonal_pyramidal
  7. octagonal_pyramidal
  8. nonagonal_pyramidal
  9. decagonal_pyramidal
  10. hendecagonal_pyramidal
  11. dodecagonal_pyramidal
  12. tridecagonal_pyramidal
  13. tetradecagonal_pyramidal
  14. pentadecagonal_pyramidal
  15. hexadecagonal_pyramidal
  16. heptadecagonal_pyramidal
  17. octadecagonal_pyramidal
  18. nonadecagonal_pyramidal
  19. icosagonal_pyramidal
  20. icosihenagonal_pyramidal
  21. icosidigonal_pyramidal
  22. icositrigonal_pyramidal
  23. icositetragonal_pyramidal
  24. icosipentagonal_pyramidal
  25. icosihexagonal_pyramidal
  26. icosiheptagonal_pyramidal
  27. icosioctagonal_pyramidal
  28. icosinonagonal_pyramidal
  29. triacontagonal_pyramidal
  30. triangular_tetrahedral[finite]
  31. triangular_square_pyramidal[finite]
  32. square_tetrahedral[finite]
  33. square_square_pyramidal[finite]
  34. tetrahedral_square_pyramidal[finite]
  35. cubic
  36. tetrahedral
  37. octahedral
  38. dodecahedral
  39. icosahedral
  40. truncated_tetrahedral
  41. truncated_cubic
  42. truncated_octahedral
  43. stella_octangula
  44. centered_cube
  45. rhombic_dodecahedral
  46. hauy_rhombic_dodecahedral
  47. centered_tetrahedron = centered_tetrahedral
  48. centered_square_pyramid = centered_pyramid
  49. centered_mgonal_pyramid(m)
  50. centered_pentagonal_pyramid
  51. centered_hexagonal_pyramid
  52. centered_heptagonal_pyramid
  53. centered_octagonal_pyramid
  54. centered_octahedron
  55. centered_icosahedron = centered_cuboctahedron
  56. centered_dodecahedron
  57. centered_truncated_tetrahedron
  58. centered_truncated_cube
  59. centered_truncated_octahedron
  60. centered_mgonal_pyramidal(m)
  61. centered_triangular_pyramidal
  62. centered_square_pyramidal
  63. centered_pentagonal_pyramidal
  64. centered_heptagonal_pyramidal
  65. centered_octagonal_pyramidal
  66. centered_nonagonal_pyramidal
  67. centered_decagonal_pyramidal
  68. centered_hendecagonal_pyramidal
  69. centered_dodecagonal_pyramidal
  70. centered_hexagonal_pyramidal = hex_pyramidal
  71. hexagonal_prism
  72. mgonal_prism(m)
  73. generalized_mgonal_pyramidal(m, start_num)
  74. generalized_pentagonal_pyramidal(start_num)
  75. generalized_hexagonal_pyramidal(start_num)
  76. generalized_cubic(start_num)
  77. generalized_octahedral(start_num)
  78. generalized_icosahedral(start_num)
  79. generalized_dodecahedral(start_num)
  80. generalized_centered_cube(start_num)
  81. generalized_centered_tetrahedron(start_num)
  82. generalized_centered_square_pyramid(start_num)
  83. generalized_rhombic_dodecahedral(start_num)
  84. generalized_centered_mgonal_pyramidal(m, start_num)
  85. generalized_mgonal_prism(m, start_num)
  86. generalized_hexagonal_prism(start_num)

Multidimensional figurate numbers

  1. k_dimensional_hypertetrahedron(k) = k_hypertetrahedron(k) = regular_k_polytopic(k) = figurate_of_order_k(k)
  2. five_dimensional_hypertetrahedron
  3. six_dimensional_hypertetrahedron
  4. k_dimensional_hypercube(k) = k_hypercube(k)
  5. five_dimensional_hypercube
  6. six_dimensional_hypercube
  7. hypertetrahedral = pentachoron = pentatope = triangulotriangular = cell_5
  8. hypercube = octachoron = tesseract = biquadratic = cell_8
  9. hyperoctahedral = hexadecachoron = four_cross_polytope = four_orthoplex = cell_16
  10. hypericosahedral = hexacosichoron = polytetrahedron = tetraplex = cell_600
  11. hyperdodecahedral = hecatonicosachoron = dodecaplex = polydodecahedron = cell_120
  12. polyoctahedral = icositetrachoron = octaplex = hyperdiamond = cell_24
  13. four_dimensional_hyperoctahedron
  14. five_dimensional_hyperoctahedron
  15. six_dimensional_hyperoctahedron
  16. seven_dimensional_hyperoctahedron
  17. eight_dimensional_hyperoctahedron
  18. nine_dimensional_hyperoctahedron
  19. ten_dimensional_hyperoctahedron
  20. k_dimensional_hyperoctahedron(k) = k_cross_polytope(k)
  21. four_dimensional_mgonal_pyramidal(m) = mgonal_pyramidal_of_the_second_order(m)
  22. four_dimensional_square_pyramidal
  23. four_dimensional_pentagonal_pyramidal
  24. four_dimensional_hexagonal_pyramidal
  25. four_dimensional_heptagonal_pyramidal
  26. four_dimensional_octagonal_pyramidal
  27. four_dimensional_nonagonal_pyramidal
  28. four_dimensional_decagonal_pyramidal
  29. four_dimensional_hendecagonal_pyramidal
  30. four_dimensional_dodecagonal_pyramidal
  31. k_dimensional_mgonal_pyramidal(k, m) = mgonal_pyramidal_of_the_k_2_th_order(k, m)
  32. five_dimensional_mgonal_pyramidal(m)
  33. five_dimensional_square_pyramidal
  34. five_dimensional_pentagonal_pyramidal
  35. five_dimensional_hexagonal_pyramidal
  36. five_dimensional_heptagonal_pyramidal
  37. five_dimensional_octagonal_pyramidal
  38. six_dimensional_mgonal_pyramidal(m)
  39. six_dimensional_square_pyramidal
  40. six_dimensional_pentagonal_pyramidal
  41. six_dimensional_hexagonal_pyramidal
  42. six_dimensional_heptagonal_pyramidal
  43. six_dimensional_octagonal_pyramidal
  44. centered_biquadratic
  45. k_dimensional_centered_hypercube(k)
  46. five_dimensional_centered_hypercube
  47. six_dimensional_centered_hypercube
  48. centered_polytope
  49. k_dimensional_centered_hypertetrahedron(k)
  50. five_dimensional_centered_hypertetrahedron
  51. six_dimensional_centered_hypertetrahedron
  52. centered_hyperoctahedral = orthoplex
  53. nexus(k)
  54. k_dimensional_centered_hyperoctahedron(k)
  55. five_dimensional_centered_hyperoctahedron
  56. six_dimensional_centered_hyperoctahedron
  57. generalized_pentatope(start_num = 0)
  58. generalized_k_dimensional_hypertetrahedron(k = 5, start_num = 0)
  59. generalized_biquadratic(start_num = 0)
  60. generalized_k_dimensional_hypercube(k = 5, start_num = 0)
  61. generalized_hyperoctahedral(start_num = 0)
  62. generalized_k_dimensional_hyperoctahedron(k = 5, start_num = 0)
  63. generalized_hyperdodecahedral(start_num = 0)
  64. generalized_hypericosahedral(start_num = 0)
  65. generalized_polyoctahedral(start_num = 0)
  66. generalized_k_dimensional_mgonal_pyramidal(k, m, start_num = 0)
  67. generalized_k_dimensional_centered_hypercube(k, start_num = 0)
  68. generalized_nexus(start_num = 0)

Errata for Figurate Numbers (2012)

This section lists the errata and corrections for the book Figurate Numbers (2012) by Michel Deza and Elena Deza. If you find any errors in the content, please feel free to contribute corrections.

  • Chapter 1, formula in the table on page 6 says:

    Name Formula
    Square 1/2 (n^2 - 0 * n)

    It should be:

    Name Formula
    Square 1/2 (2n^2 - 0 * n)
  • Chapter 1, formula in the table on page 51 says:

    Name Formula
    Cent. icosihexagonal 1/3n^2 - 13 * n + 1 546, 728, 936, 1170

    It should be:

    Name Formula
    Cent. icosihexagonal 1/3n^2 - 13 * n + 1 547, 729, 937, 1171
  • Chapter 1, formula in the table on page 51 says:

    Name Formula
    Cent. icosiheptagonal 972

    It should be:

    Name Formula
    Cent. icosiheptagonal 973
  • Chapter 1, formula in the table on page 51 says:

    Name Formula
    Cent. icosioctagonal 84

    It should be:

    Name Formula
    Cent. icosioctagonal 85
  • Chapter 1, page 65 (polite numbers) says:

    inpolite numbers

    It should read:

    impolite numbers

  • Chapter 1, formula (truncated centered pentagonal numbers) on page 72 says:

    TCSS_5(n) = (35n^2 - 55n) / 2 + 3

    It should be:

    TCSS_5(n) = (35n^2 - 55n) / 2 + 11

  • Chapter 2, formula of octagonal pyramidal number on page 92 says:

    n(n+1)(6n-1) / 6

    It should be:

    n(n+1)(6n-3) / 6

  • Chapter 2, page 140 says:

    centered square pyramidal numbers are 1, 6, 19, 44, 85, 111, 146, 231, ...

    This sequence must exclude the number 111:

    centered square pyramidal numbers are 1, 6, 19, 44, 85, 111, 146, 231, ...

  • Chapter 2, page 155 (generalized centered tetrahedron numbers) says:

    S_3^3(n) = ((2n - 1)(n^2 + n + 3)) / 3

    Formula must have a negative sign:

    S_3^3(n) = ((2n - 1)(n^2 - n + 3)) / 3

  • Chapter 2, page 156 (generalized centered square pyramid numbers) says:

    S_4^3(n) = ((2n - 1) * (n^2 - n + 2)^2) / 3

    Formula must write:

    S_4^3(n) = ((2n - 1) * (n^2 - n + 2)) / 2

  • Chapter 3, page 188 (hyperoctahedral numbers) says:

    hexadecahoron numbers

    It should read:

    hexadecachoron numbers

  • Chapter 3, page 190 (hypericosahedral numbers) says:

    hexacisihoron numbers

    It should read:

    hexacosichoron numbers

Contributing

FigurateNumber is currently under development, and we warmly invite your contributions. Just fork the project and then submit a pull request:

  • Sequences from Chapters 1, 2, and 3 of the book
  • New sequences not included in the book: If you have new sequences, please provide the source.
  • Tests, documentation and errata in the book

When making commits, please use the following conventional prefixes to indicate the nature of the changes: feat, refactor, fix, docs, and test.

About

Figuratenum is the most comprehensive and specialized Python library for figurate numbers, capable of generating up to 233 different sequences across various dimensions and generalizations.

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages