Skip to content

sBuah merupakan aplikasi berbasis website yang dapat mengklasifikasi kualitas buah melalui gambar yang diunggah ke situs sBuah.

Notifications You must be signed in to change notification settings

fadillarizalul/capstone-dicoding-sbuah

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

capstone-dicoding-sbuah

sBuah Web-app logo

sBuah is a website application to classify an image of fruit. With this application, user can detect whether the fruit is Fresh or Rotten. By using Machine Learning algorithm, the model results an accuracy of about more than 97%. Model then deployed using Flask on Heroku App. The aim of this project is to reduce fruit waste and largerly food waste that contributes to Climate Change, especially in Indonesia.

Getting Started

First of all, ensure that the following requirements already installed on your system.

absl-py==1.0.0
astunparse==1.6.3
cachetools==4.2.4
certifi==2021.10.8
charset-normalizer==2.0.9
click==8.0.3
colorama==0.4.4
Flask==2.0.2
flatbuffers==2.0
gast==0.4.0
google-auth==2.3.3
google-auth-oauthlib==0.4.6
google-pasta==0.2.0
grpcio==1.43.0
gunicorn==18.0.0
h5py==3.6.0
idna==3.3
importlib-metadata==4.9.0
itsdangerous==2.0.1
Jinja2==3.0.3
keras==2.7.0
Keras-Preprocessing==1.1.2
libclang==12.0.0
Markdown==3.3.6
MarkupSafe==2.0.1
numpy==1.21.2
oauthlib==3.1.1
opt-einsum==3.3.0
pillow==7.1.2
protobuf==3.19.1
pyasn1==0.4.8
pyasn1-modules==0.2.8
requests==2.26.0
requests-oauthlib==1.3.0
rsa==4.8
six==1.16.0
tensorboard==2.7.0
tensorboard-data-server==0.6.1
tensorboard-plugin-wit==1.8.0
tensorflow-cpu==2.7.0
tensorflow-estimator==2.7.0
tensorflow-io-gcs-filesystem==0.23.1
termcolor==1.1.0
typing_extensions==4.0.1
urllib3==1.26.7
Werkzeug==2.0.2
wincertstore==0.2
wrapt==1.13.3
zipp==3.6.0

This project can be run locally, by use the following command :-
python app.py
If it doesn't, the local URL would be output in the terminal, just copy it and open it in the browser manually.
By default, it would be http://127.0.0.1:5000/.
It also deployed onlinely on Heroku, via this Link
After that, the webpage should open in the browser automatically.

Click on Mari Coba then Upload Image and choose an image from your lcoal to upload.
Once uploaded, click Predict, then the web-app shall perform result and the output will be displayed.

Tools and Stacks

References

Project Member

About

sBuah merupakan aplikasi berbasis website yang dapat mengklasifikasi kualitas buah melalui gambar yang diunggah ke situs sBuah.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published