-
Notifications
You must be signed in to change notification settings - Fork 10
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
7 changed files
with
275 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,220 @@ | ||
from .base import * | ||
import einx.tracer as tracer | ||
from einx.tracer.tensor import op | ||
import einx, types | ||
from functools import partial | ||
import functools | ||
|
||
|
||
def create(): | ||
tTensor = tracer.import_("Tensor", from_="tinygrad") | ||
tdtypes = tracer.import_("dtypes", from_="tinygrad") | ||
from tinygrad import Tensor, dtypes | ||
|
||
def scalar_to_tensor(x): | ||
if isinstance(x, (einx.tracer.Scalar, float, int)): | ||
return einx.tracer.apply( | ||
tTensor, | ||
args=[x], | ||
output=einx.tracer.Tensor([]), | ||
) | ||
else: | ||
return x | ||
|
||
def elementwise(func, convert_all_to_tensor=False): | ||
@einx.trace | ||
@functools.wraps(func) | ||
def outer(*args): | ||
if convert_all_to_tensor: | ||
args = [scalar_to_tensor(a) for a in args] | ||
else: | ||
args = [a for a in args] | ||
args[0] = scalar_to_tensor(args[0]) | ||
return op.elementwise(func)(*args) | ||
return outer | ||
|
||
def reduce(func): | ||
@einx.trace | ||
@functools.wraps(func) | ||
def reduce(tensor, axis=None, **kwargs): | ||
keepdims = kwargs.get("keepdims", False) | ||
if axis is None: | ||
shape = () | ||
else: | ||
axes = [axis] if isinstance(axis, int) else axis | ||
shape = list(tensor.shape) | ||
if keepdims: | ||
for a in axes: | ||
shape[a] = 1 | ||
else: | ||
for a in sorted(axes, reverse=True): | ||
del shape[a] | ||
kwargs = {**kwargs, **{"axis": axis}} | ||
if "keepdims" in kwargs: | ||
kwargs["keepdim"] = kwargs.pop("keepdims") | ||
return tracer.apply(func, args=[tensor], kwargs=kwargs, output=tracer.Tensor(shape)) | ||
return reduce | ||
|
||
def to_dtype(x): | ||
if isinstance(x, str): | ||
return getattr(dtypes, x) | ||
else: | ||
return x | ||
|
||
to_dtype2 = to_dtype | ||
|
||
class tinygrad(Backend): | ||
name = "tinygrad" | ||
tensor_types = [Tensor] | ||
|
||
to_dtype = staticmethod(to_dtype2) | ||
|
||
@staticmethod | ||
@einx.trace | ||
def to_tensor(tensor, shape): | ||
return einx.tracer.apply( | ||
tTensor, | ||
args=[tensor], | ||
output=einx.tracer.Tensor(shape), | ||
) | ||
|
||
reshape = op.reshape(tTensor.reshape) | ||
transpose = op.transpose(tTensor.permute) | ||
broadcast_to = op.broadcast_to(tTensor.expand) | ||
|
||
@classmethod | ||
@einx.trace | ||
def einsum(backend, equation, *tensors): | ||
x = equation.split("->") | ||
if len(x) != 2: | ||
raise ValueError("Invalid equation") | ||
inputs, output = x | ||
inputs = inputs.split(",") | ||
if len(inputs) != len(tensors): | ||
raise ValueError("Invalid equation") | ||
inputs = [x.strip().replace(" ", "") for x in inputs] | ||
tensors = [t for t in tensors] | ||
|
||
scalars = [] | ||
for i in list(range(len(inputs)))[::-1]: | ||
if (len(inputs[i]) > 0) != (len(tensors[i].shape) > 0): | ||
raise ValueError("Invalid equation") | ||
if len(inputs[i]) == 0: | ||
scalars.append(tensors[i]) | ||
inputs.pop(i) | ||
tensors.pop(i) | ||
|
||
if len(tensors) > 1: | ||
equation = ",".join(inputs) + "->" + output | ||
x = op.einsum(tTensor.einsum)(equation, *tensors) | ||
elif len(tensors) == 1: | ||
x = tensors[0] | ||
else: | ||
x = scalars[0] | ||
scalars = scalars[1:] | ||
for scalar in scalars: | ||
x = backend.multiply(x, scalar) | ||
|
||
return x | ||
|
||
@staticmethod | ||
@einx.trace | ||
def arange(n, dtype="int32"): | ||
if isinstance(dtype, str): | ||
dtype = getattr(tdtypes, dtype) | ||
return op.arange(tTensor.arange)(n, dtype=dtype) | ||
|
||
@staticmethod | ||
@einx.trace | ||
def concatenate(tensors, axis=0): | ||
shape = list(tensors[0].shape) | ||
shape[axis] = sum(tensor.shape[axis] for tensor in tensors) | ||
return tracer.apply( | ||
tTensor.cat, args=[*tensors], kwargs={"dim": axis}, output=tracer.Tensor(shape) | ||
) | ||
|
||
add = associative_binary_to_nary(elementwise(tTensor.add)) | ||
subtract = elementwise(tTensor.sub) | ||
multiply = associative_binary_to_nary(elementwise(tTensor.mul)) | ||
true_divide = elementwise(tTensor.div) | ||
floor_divide = elementwise(partial(tTensor.div, upcast=False)) | ||
divide = elementwise(tTensor.div) | ||
logical_and = associative_binary_to_nary(elementwise(tTensor.mul)) | ||
logical_or = associative_binary_to_nary(elementwise(tTensor.add)) | ||
where = elementwise(tTensor.where) | ||
less = elementwise(tracer.Operator("<")) | ||
less_equal = elementwise(tracer.Operator("<=")) | ||
greater = elementwise(tracer.Operator(">")) | ||
greater_equal = elementwise(tracer.Operator(">=")) | ||
equal = elementwise(tracer.Operator("==")) | ||
not_equal = elementwise(tracer.Operator("!=")) | ||
maximum = associative_binary_to_nary(elementwise(tTensor.maximum)) | ||
minimum = associative_binary_to_nary(elementwise(tTensor.minimum)) | ||
|
||
sum = reduce(tTensor.sum) | ||
mean = reduce(tTensor.mean) | ||
var = reduce(tTensor.var) | ||
std = reduce(tTensor.std) | ||
|
||
count_nonzero = reduce(tTensor.sum) | ||
min = reduce(tTensor.min) | ||
max = reduce(tTensor.max) | ||
# tinygrad's logsumexp currently does not support multiple axes, so | ||
# we use our custom implementation instead: | ||
# logsumexp = reduce(tTensor.logsumexp) | ||
|
||
log = op.elementwise(tTensor.log) | ||
exp = op.elementwise(tTensor.exp) | ||
sqrt = op.elementwise(tTensor.sqrt) | ||
rsqrt = op.elementwise(tTensor.rsqrt) | ||
square = op.elementwise(tTensor.square) | ||
|
||
@staticmethod | ||
@einx.trace | ||
def get_at(tensor, coordinates): | ||
raise NotImplementedError() | ||
|
||
@staticmethod | ||
@einx.trace | ||
def set_at(tensor, coordinates, updates): | ||
raise NotImplementedError() | ||
|
||
@staticmethod | ||
@einx.trace | ||
def add_at(tensor, coordinates, updates): | ||
raise NotImplementedError() | ||
|
||
@staticmethod | ||
@einx.trace | ||
def subtract_at(tensor, coordinates, updates): | ||
raise NotImplementedError() | ||
|
||
flip = op.keep_shape(tTensor.flip) | ||
softmax = op.keep_shape(tTensor.softmax) | ||
log_softmax = op.keep_shape(tTensor.log_softmax) | ||
|
||
@staticmethod | ||
@einx.trace | ||
def stop_gradient(tensor): | ||
return tensor # TODO: set requires_grad to False? | ||
|
||
@staticmethod | ||
@einx.trace | ||
def vmap(op, in_axes, out_axes, input_shapes, output_shapes): | ||
raise NotImplementedError( | ||
"Functions relying on vmap are not supported for the tinygrad backend" | ||
) | ||
|
||
class random: | ||
@einx.trace | ||
def bernoulli(rng, p, shape): | ||
return ( | ||
einx.tracer.apply( | ||
tTensor.rand, | ||
args=[*shape], | ||
output=einx.tracer.Tensor(shape), | ||
) | ||
<= p | ||
) | ||
|
||
return tinygrad() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters