Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix typos in provable-mlr-forecasting-aaves-lifetime-repayments.md #644

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -299,14 +299,14 @@ Scarb is the Cairo package manager specifically created to streamline our Cairo
To create a new Scarb project, open your terminal and run:

```sh
scarb new multiple_linear_regresion
scarb new multiple_linear_regression
```

A new project folder should be created for you and make sure to replace the content in Scarb.toml file with the following code:

```toml
[package]
name = "multiple_linear_regresion"
name = "multiple_linear_regression"
version = "0.1.0"
[dependencies]
orion = { git = "https://github.com/gizatechxyz/onnx-cairo" }
Expand Down Expand Up @@ -400,7 +400,7 @@ use orion::operators::tensor::{
FP16x16TensorDiv, FP16x16TensorMul
};
use orion::numbers::{FP16x16, FixedTrait};
use multiple_linear_regresion::helper_functions::{
use multiple_linear_regression::helper_functions::{
get_tensor_data_by_row, transpose_tensor, calculate_mean, calculate_r_score,
normalize_user_x_inputs, rescale_predictions
};
Expand Down Expand Up @@ -507,8 +507,8 @@ use orion::operators::tensor::{
FP16x16TensorDiv, FP16x16TensorMul
};
use orion::numbers::{FP16x16, FixedTrait};
use multiple_linear_regresion::data_preprocessing::{Dataset, DatasetTrait};
use multiple_linear_regresion::helper_functions::{
use multiple_linear_regression::data_preprocessing::{Dataset, DatasetTrait};
use multiple_linear_regression::helper_functions::{
get_tensor_data_by_row, transpose_tensor, calculate_mean, calculate_r_score,
normalize_user_x_inputs, rescale_predictions
};
Expand Down Expand Up @@ -562,11 +562,11 @@ impl RegressionOperation of MultipleLinearRegressionModelTrait {
}

fn MultipleLinearRegression(dataset: Dataset) -> MultipleLinearRegressionModel {
let x_values_tranposed = transpose_tensor(dataset.x_values);
let x_values_tranposed_with_bias = add_bias_term(x_values_tranposed, 0);
let decorrelated_x_features = decorrelate_x_features(x_values_tranposed_with_bias);
let x_values_transposed = transpose_tensor(dataset.x_values);
let x_values_transposed_with_bias = add_bias_term(x_values_transposed, 0);
let decorrelated_x_features = decorrelate_x_features(x_values_transposed_with_bias);
let coefficients = compute_gradients(
decorrelated_x_features, dataset.y_values, x_values_tranposed_with_bias
decorrelated_x_features, dataset.y_values, x_values_transposed_with_bias
);
return MultipleLinearRegressionModel { coefficients };
}
Expand Down Expand Up @@ -1009,15 +1009,15 @@ At this stage, we have already implemented all the important sections of this tu
use debug::PrintTrait;
use array::{ArrayTrait, SpanTrait};

use multiple_linear_regresion::datasets::aave_data::aave_x_features::aave_x_features;
use multiple_linear_regresion::datasets::aave_data::aave_y_labels::aave_y_labels;
use multiple_linear_regresion::datasets::user_inputs_data::aave_weth_revenue_data_input::{aave_weth_revenue_data_input };
use multiple_linear_regression::datasets::aave_data::aave_x_features::aave_x_features;
use multiple_linear_regression::datasets::aave_data::aave_y_labels::aave_y_labels;
use multiple_linear_regression::datasets::user_inputs_data::aave_weth_revenue_data_input::{aave_weth_revenue_data_input };

use multiple_linear_regresion::model::multiple_linear_regression_model::{
use multiple_linear_regression::model::multiple_linear_regression_model::{
MultipleLinearRegressionModel, MultipleLinearRegression, MultipleLinearRegressionModelTrait
};
use multiple_linear_regresion::data_preprocessing::{Dataset, DatasetTrait};
use multiple_linear_regresion::helper_functions::{get_tensor_data_by_row, transpose_tensor, calculate_mean ,
use multiple_linear_regression::data_preprocessing::{Dataset, DatasetTrait};
use multiple_linear_regression::helper_functions::{get_tensor_data_by_row, transpose_tensor, calculate_mean ,
calculate_r_score, normalize_user_x_inputs, rescale_predictions};

use orion::numbers::{FP16x16, FixedTrait};
Expand Down Expand Up @@ -1081,10 +1081,10 @@ Finally, we can execute the test file by running:
```shell
>> scarb cairo-test -f multiple_linear_regression_test

testing multiple_linear_regresion ...
testing multiple_linear_regression ...
running 1 tests

test multiple_linear_regresion::test::multiple_linear_regression_test ...
test multiple_linear_regression::test::multiple_linear_regression_test ...
test result: ok. 1 passed; 0 failed; 0 ignored; 0 filtered out;
```

Expand Down