Skip to content

Commit

Permalink
Create notes.ts
Browse files Browse the repository at this point in the history
  • Loading branch information
godwinjs authored Jan 16, 2025
1 parent 04bf6c0 commit c5c6073
Showing 1 changed file with 119 additions and 0 deletions.
119 changes: 119 additions & 0 deletions notes.ts
Original file line number Diff line number Diff line change
@@ -0,0 +1,119 @@
console.log("------------------TIME & SPACE COMPLEXITY--------------------")
// Constant Time O(1): no matter the size of the input it would still have the same runtime.
// Linear Time O(n): Runtime increases as the input grows, the runtime is directly proportional to the input.
// Quadratic Time O(n^2): The runtime required to complete a function is directly proportional to
// the square of the input data set.
// Logrithmic Time O(Log n): the runtime of a function is directly proportional to the logarithm of the input size
//
// Factorial Time Complexity
// Exponential Time Complexity

// O of log n solution for finding the power of a number
function Power(base: number, exp: number ): nnumber {
// for X^0 return 1
if(exp === 0) {
return 1
}

/*
if the exponent is even you can recursively call the function once to
find a result for (half the exponent of the base) base^exp/2.
and when you multiply the result by itself you get the real Power.
*/
if(exp % 2 === 0) {
halfPower = Power(base, exp/2)
return halfPower * halfPower
}else {
halfPower = Power(base, (exp-1)/2) // minus base ^ 1 to make it even
return halfPower * halfPower * base // multiply the result with base ^ 1 you subtracted before.
}
}
console.log( Power(2,2) )

// -----SPACE COMPLEXITY----

/*
Relationship between space and time complexity:
In most cases space ccomplexity of a function and it's Time complexity will be the same.
sometimes a function will take more memory than runtime
Variable, Data structures([]{}) and Function call takes up space.
Space complexity is the sum of the space requirement of all the variable, data structure and function calls
*/

// O(n^2) Quadratic solution
function MaxSubArrr(arr: number[], k: number): number {
let maxSum = -Infinity;


for(let i = 0; i <= arr.length - k; i++) {
// loop goes max i = 4 and 4 <= 8-3;
// loop goes again to meet the condition i = 5 and 5 = 8 - 3
let currentSum = 0;

for(let j = i; j < i + k; j++){
// loop goes j = 0, 0 < 0 + 3, 0++ -> j = 2; 2 < 1 + 3; 2++..
// ... j = 5 (the met condition above); 5 < 5 + 3 (arr.length); 5++;
// diff: parent loop used <= to enter the max of 5(arr.length - k), and..
// child loop idx j stayed at the max of 7 (arr[7] = 4), if <= is used here,..
// the loop idx j would equal 8 and arr[8] will give undefined
currentSum += arr[j]
}

maxSum = Math.max(currentSum, maxSum)
}

return maxSum
}
const array = [2,5,3,1,11,7,6,4], n = 3;

console.log('O(n^2) Quadratic solution: ', MaxSubArrr(array, n) )

// My Solution O(n) Linear Solution
function MaxSubArrrSlide(arr: number[], k: number): number {
let maxSum = arr[0];
//no need for -Infinity set the maxSum to the first item in the array
//and loop to get the first sum of k subArrays

let i = 1;
while(i < k){
maxSum += arr[i]
i++
}

let currentSum = maxSum;

//start the loop from the next item in arr using it as the anchor
// -------- anchor = arr[j] = 5 (the 2nd item in the arr)
for(let j = 1; j <= arr.length - k; j++){
// subtract the prev item ( the item before the current anchor arr[j])..
//..from the current sum and add the
currentSum = (currentSum - arr[j-1]) + arr[j + 2]
console.log(currentSum)

maxSum = Math.max(currentSum, maxSum)
}

return maxSum
}
// SOLUTION 2 O(n) Linear Solution
function MaxSubArrrSlide2(arr: number[], k: number): number {
let maxSum = arr.slice(0, k).reduce((sum, next) => sum + next ,0);

let currentSum = maxSum;

// start the loop from the last item in the sub array using it as the anchor
// i - k = 0 -> arr[0] ----- anchor = arr[3] = 1 (the 4th item in the arr)
for(let i = k; i < arr.length; i++){
// subtract the element that left and add the one that entered the window
currentSum = (currentSum - arr[i - k]) + arr[i]

maxSum = Math.max(currentSum, maxSum)
}

return maxSum
}

console.log('O(n) Linear Solution: ', MaxSubArrrSlide2(array, n) )

0 comments on commit c5c6073

Please sign in to comment.