-
Install module:
npm install typenetic --save
-
You need to set these options in
tsconfig.json
file in your project:{ "emitDecoratorMetadata": true, "experimentalDecorators": true }
-
Create
GeneticOperators.ts
file:import {Selection, Crossover, Mutation} from "typenetic"; export class GeneticOperators { @Selection() selection(population: Array<any>): Array<any> { // perform elities selection return elities; } @Crossover() crossover(parentA: any, parentB: any): any { // perform crossover return offspring; } @Mutation() mutation(offspring: any): any { // perform mutation return offspring; } }
-
Create
index.ts
file:import {evolve} from "typenetic"; import {GeneticOperators} from "./GeneticOperators"; // create population const population: Array<any> = []; // evolve population let evolved: Array<any> = evolve(population);
Signature | Description |
---|---|
@Selection(size?: number) |
Selection operator, which task is to select elities from population. If size provided, then decorated function result will be sliced: result.slice(0, size) (useful in eg. tournament selection). |
@Crossover() |
Crossover operator is responsible for crossing two units. |
@Mutation() |
Mutation operator randomly modify genes in the unit. |
Tournament selection chooses best units from population, based on unit's fitness.
import {Selection} from "typenetic";
export class GeneticOperators {
// select 3 elities from population
@Selection(3)
selection(population: Array<any>): Array<any> {
return population.sort((unitA: any, unitB: any) => {
return unitB.fitness - unitA.fitness;
});
}
}
In single point crossover, one point, randomly chosen is used to split parents and create new unit with genes from first parent before chosen point and with genes from second parent, beyond chosen point.
import {Crossover} from "typenetic";
export class GeneticOperators {
@Crossover()
crossover(parentA: Array<any>, parentB: Array<any>): Array<any> {
const cutPoint = this.random(0, parentA.neurons.length - 1);
for (let i = cutPoint; i < parentA.neurons.length; i++) {
let biasFromParentA = parentA.neurons[i].bias;
parentA.neurons[i].bias = parentB.neurons[i].bias;
parentB.neurons[i].bias = biasFromParentA;
}
return this.random(0, 1) === 1 ? parentA : parentB;
}
private random(min: number, max: number): number {
return Math.floor(Math.random() * (max - min + 1) + min);
};
}
Mutation operator randolmy modify genes of units. The probability of mutation depends on mutation rate.
import {Mutation} from "typenetic";
export class GeneticOperators {
@Mutation()
mutation(offspring: Array<any>): Array<any> {
for (let i = 0; i < offspring.neurons.length; i++) {
offspring.neurons[i].bias = this.mutate(offspring.neurons[i].bias);
}
for (let i = 0; i < mutated.connections.length; i++) {
offspring.connections[i].weight = this.mutate(offspring.connections[i].weight);
}
return offspring;
}
private mutate(gene) {
// mutation rate at 0.5 (50%)
if (Math.random() < 0.5) {
const mutateFactor = 1 + ((Math.random() - 0.5) * 3 + (Math.random() - 0.5));
return gene *= mutateFactor;
}
return gene;
}
}