Skip to content

Commit

Permalink
Merge pull request #66 from makrianast/main
Browse files Browse the repository at this point in the history
Allow batching of items when sent to LLM
  • Loading branch information
woodthom2 authored Nov 18, 2024
2 parents 093518e + b10ba08 commit 3a2f02f
Show file tree
Hide file tree
Showing 2 changed files with 95 additions and 15 deletions.
47 changes: 32 additions & 15 deletions src/harmony/matching/default_matcher.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,15 +28,14 @@
from typing import List

import numpy as np
from numpy import ndarray
from sentence_transformers import SentenceTransformer

from harmony import match_instruments_with_function
from harmony.schemas.requests.text import Instrument
from numpy import ndarray
from sentence_transformers import SentenceTransformer

if (
os.environ.get("HARMONY_SENTENCE_TRANSFORMER_PATH", None) is not None
and os.environ.get("HARMONY_SENTENCE_TRANSFORMER_PATH", None) != ""
os.environ.get("HARMONY_SENTENCE_TRANSFORMER_PATH", None) is not None
and os.environ.get("HARMONY_SENTENCE_TRANSFORMER_PATH", None) != ""
):
sentence_transformer_path = os.environ["HARMONY_SENTENCE_TRANSFORMER_PATH"]
else:
Expand All @@ -47,24 +46,42 @@
model = SentenceTransformer(sentence_transformer_path)


def convert_texts_to_vector(texts: List) -> ndarray:
embeddings = model.encode(sentences=texts, convert_to_numpy=True)
def convert_texts_to_vector(texts: List, batch_size=50, max_batches=2000) -> ndarray:
if batch_size == 0:
embeddings = model.encode(sentences=texts, convert_to_numpy=True)

return embeddings
return embeddings

embeddings = []
batch_count = 0

# Process texts in batches
for i in range(0, len(texts), batch_size):
if batch_count >= max_batches:
break
batch = texts[i:i + batch_size]
batch_embeddings = model.encode(sentences=batch, convert_to_numpy=True)
embeddings.append(batch_embeddings)
batch_count += 1

# Concatenate all batch embeddings into a single NumPy array
return np.concatenate(embeddings, axis=0)


def match_instruments(
instruments: List[Instrument],
query: str = None,
mhc_questions: List = [],
mhc_all_metadatas: List = [],
mhc_embeddings: np.ndarray = np.zeros((0, 0)),
texts_cached_vectors: dict[str, List[float]] = {},
instruments: List[Instrument],
query: str = None,
mhc_questions: List = [],
mhc_all_metadatas: List = [],
mhc_embeddings: np.ndarray = np.zeros((0, 0)),
texts_cached_vectors: dict[str, List[float]] = {}, batch_size: int = 50, max_batches: int = 2000,

) -> tuple:
return match_instruments_with_function(
instruments=instruments,
query=query,
vectorisation_function=convert_texts_to_vector,
vectorisation_function=lambda texts: convert_texts_to_vector(texts, batch_size=batch_size,
max_batches=max_batches),
mhc_questions=mhc_questions,
mhc_all_metadatas=mhc_all_metadatas,
mhc_embeddings=mhc_embeddings,
Expand Down
63 changes: 63 additions & 0 deletions tests/test_batch.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@
'''
MIT License
Copyright (c) 2023 Ulster University (https://www.ulster.ac.uk).
Project: Harmony (https://harmonydata.ac.uk)
Maintainer: Thomas Wood (https://fastdatascience.com)
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
'''

import sys
import unittest
import numpy

sys.path.append("../src")

from harmony.matching.default_matcher import convert_texts_to_vector

class createModel:
def encode(self, sentences, convert_to_numpy=True):
# Generate a dummy embedding with 768 dimensions for each sentence
return numpy.array([[1] * 768] * len(sentences))



model = createModel()

class TestBatching(unittest.TestCase):
def test_convert_texts_to_vector_with_batching(self):
# Create a list of 10 dummy texts
texts = ["text" + str(i) for i in range(10)]


batch_size = 5
max_batches = 2
embeddings = convert_texts_to_vector(texts, batch_size=batch_size, max_batches=max_batches)


self.assertEqual(embeddings.shape[0], 10)


self.assertEqual(embeddings.shape[1], 384)


if __name__ == "__main__":
unittest.main()

0 comments on commit 3a2f02f

Please sign in to comment.