-
Notifications
You must be signed in to change notification settings - Fork 66
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
125 additions
and
0 deletions.
There are no files selected for viewing
125 changes: 125 additions & 0 deletions
125
src/content/blog/Higress-gvr7dx_awbbpb_bzb7ptithuf1bd5o.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,125 @@ | ||
--- | ||
title: "自建DeepSeek时代已来,联网搜索如何高效实现" | ||
description: "自建DeepSeek时代已来,联网搜索如何高效实现" | ||
date: "2025-02-28" | ||
category: "article" | ||
keywords: ["Higress"] | ||
authors: "CH3CHO" | ||
--- | ||
|
||
## 一、开源LLM的新纪元:DeepSeek带来的技术平权 | ||
随着DeepSeek等高质量开源大模型的涌现,企业自建智能问答系统的成本已降低90%以上。基于7B/13B参数量的模型在常规GPU服务器上即可获得商业级响应效果,配合Higress开源AI网关的增强能力,开发者可快速构建具备实时联网搜索能力的智能问答系统。 | ||
|
||
## 二、Higress:零代码增强LLM的瑞士军刀 | ||
Higress作为云原生API网关,通过wasm插件提供开箱即用的AI增强能力: | ||
|
||
 | ||
|
||
主要能力矩阵: | ||
|
||
+ **联网搜索**:实时接入互联网最新信息 | ||
+ **智能路由**:多模型负载均衡与自动兜底 | ||
+ **安全防护**:敏感词过滤与注入攻击防御 | ||
+ **效能优化**:请求缓存+token配额管理 | ||
+ **可观测性**:全链路监控与审计日志 | ||
|
||
## 三、联网搜索的技术实现与场景价值 | ||
### 核心架构解析 | ||
 | ||
|
||
### 关键技术特性 | ||
1. **多引擎智能分流** | ||
+ 公共搜索(Google/Bing/Quark)获取实时资讯 | ||
+ 学术搜索(Arxiv)对接科研场景 | ||
+ 私有搜索(Elasticsearch)连接企业/个人知识库 | ||
2. **搜索增强核心思路** | ||
+ LLM重写Query:基于 LLM 识别用户意图,生成搜索命令,可以大幅提升搜索增强效果 | ||
+ 关键词提炼:针对不同的引擎,需要生成不同的提示词,例如Arxiv里英文论文居多,关键词需要用英文 | ||
+ 领域识别:仍以Arxiv举例,Arxiv划分了计算机科学/物理学/数学/生物学等等不同学科下的细分领域,指定领域进行搜索,可以提升搜索准确度 | ||
+ 长查询拆分:长查询可以拆分为多个短查询,提高搜索效率 | ||
+ 高质量数据:Google/Bing/Arxiv搜索都只能输出文章摘要,而基于阿里云信息检索对接Quark搜索,可以获取全文,可以提高LLM生成内容的质量 | ||
|
||
### 典型应用场景效果展示 | ||
**金融资讯问答** | ||
 | ||
|
||
**前沿技术探索** | ||
 | ||
 | ||
|
||
**医疗问题解答** | ||
 | ||
 | ||
|
||
## 四、从开源到落地:三步构建智能问答系统 | ||
1. **基础部署** | ||
|
||
```bash | ||
# 一行命令安装并启动Higress网关 | ||
curl -sS https://higress.cn/ai-gateway/install.sh | bash | ||
|
||
# 用vllm部署DeepSeek-R1-Distill-Qwen-7B示意 | ||
python3 -m vllm.entrypoints.openai.api_server --model=deepseek-ai/DeepSeek-R1-Distill-Qwen-7B --dtype=half --tensor-parallel-size=4 --enforce-eager | ||
``` | ||
|
||
2. **插件配置** | ||
|
||
可以通过`http://127.0.0.1:8001`访问higress控制台,给ai-search插件做如下配置 | ||
|
||
```yaml | ||
searchFrom: | ||
- type: quark | ||
apiKey: "your-aliyun-ak" | ||
keySecret: "your-aliyun-sk" | ||
serviceName: "aliyun-svc.dns" | ||
servicePort: 443 | ||
- type: google | ||
apiKey: "your-google-api-key" | ||
cx: "search-engine-id" | ||
serviceName: "google-svc.dns" | ||
servicePort: 443 | ||
- type: bing | ||
apiKey: "bing-key" | ||
serviceName: "bing-svc.dns" | ||
servicePort: 443 | ||
- type: arxiv | ||
serviceName: "arxiv-svc.dns" | ||
servicePort: 443 | ||
searchRewrite: | ||
llmServiceName: "llm-svc.dns" | ||
llmServicePort: 443 | ||
llmApiKey: "your-llm-api-key" | ||
llmUrl: "https://api.example.com/v1/chat/completions" | ||
llmModelName: "deepseek-chat" | ||
timeoutMillisecond: 15000 | ||
``` | ||
3. **对接SDK或前端** | ||
使用这个OpenAI协议BaseUrl:[http://127.0.0.1:8080/v1,就可以使用ChatBox/LobeChat等支持OpenAI协议的对话工具进行对话。](http://127.0.0.1:8080/v1,就可以使用ChatBox/LobeChat等支持OpenAI协议的对话工具进行对话。) | ||
也可以直接使用OpenAI的SDK对接,如下所示: | ||
```python | ||
import json | ||
from openai import OpenAI | ||
|
||
client = OpenAI( | ||
api_key="none", | ||
base_url="http://localhost:8080/v1", | ||
) | ||
|
||
completion = client.chat.completions.create( | ||
model="deepseek-r1", | ||
messages=[ | ||
{"role": "user", "content": "分析一下国际金价走势"} | ||
], | ||
stream=False | ||
) | ||
|
||
print(completion.choices[0].message.content) | ||
``` | ||
|
||
通过Higress+DeepSeek的开源组合,企业可在24小时内完成从零到生产级的智能问答系统部署,使LLM真正成为业务增长的智能引擎。 | ||
|
||
|