Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Ensure that tied parameter is children of module #3327

Merged
merged 1 commit into from
Jan 9, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion src/accelerate/utils/modeling.py
Original file line number Diff line number Diff line change
Expand Up @@ -1183,7 +1183,7 @@ def get_module_size_with_ties(
tied_modules = []

for tied_param in tied_params:
tied_module_index = [i for i, (n, _) in enumerate(modules_to_treat) if n in tied_param][0]
tied_module_index = [i for i, (n, _) in enumerate(modules_to_treat) if tied_param.startswith(n + ".")][0]
tied_module_names.append(modules_to_treat[tied_module_index][0])
tied_modules.append(modules_to_treat[tied_module_index][1])

Expand Down
45 changes: 45 additions & 0 deletions tests/test_modeling_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,6 +43,7 @@
convert_file_size_to_int,
find_tied_parameters,
get_balanced_memory,
get_module_size_with_ties,
get_state_dict_offloaded_model,
infer_auto_device_map,
load_checkpoint_in_model,
Expand Down Expand Up @@ -882,6 +883,50 @@ def test_get_balanced_memory(self):
max_memory = get_balanced_memory(model, max_memory={0: 0, "cpu": 100})
assert {0: 0, "cpu": 100} == max_memory

# Tests that get_module_size_with_ties returns the correct tied modules in
# models with tied parameters whose parent modules share the same name prefix
# See issue #3308: https://github.com/huggingface/accelerate/issues/3308
def test_get_module_size_with_ties(self):
# Create a model with a ModuleList containing more than 10 elements
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Let's add a reference to issue #3308 here.

# so the names of some layers share the same prefix, e.g. "1" and "10"
num_layers = 15
model = nn.ModuleList([nn.Linear(10, 10) for _ in range(num_layers)])
# Tie .weight for all the layers
for i in range(1, num_layers):
model[i].weight = model[i - 1].weight
# Each tied parameter group is sorted in alphabetical ordering,
# mimicking the output of find_tied_parameters
tied_parameters = [sorted([f"{i}.weight" for i in range(num_layers)])]
# Compute module sizes
weight_size, bias_size = (
model[0].weight.element_size() * model[0].weight.numel(),
model[0].bias.element_size() * model[0].bias.numel(),
)
module_sizes = dict(
**{"": num_layers * (weight_size + bias_size)},
**{f"{i}": (weight_size + bias_size) for i in range(num_layers)},
**{f"{i}.weight": weight_size for i in range(num_layers)},
**{f"{i}.bias": bias_size for i in range(num_layers)},
)
# Simulate the input for get_module_size_with_ties when invoked from infer_auto_device_map
# when the first module in model is being processed
modules_to_treat = list(model.named_children())[1:]
tied_params = tied_parameters[0][1:]
module_size = weight_size + bias_size

module_size_with_ties, tied_module_names, tied_modules = get_module_size_with_ties(
tied_params, module_size, module_sizes, modules_to_treat
)
# The expected lists are ordered using as key the module names, to follow
# the same order as the tied_parameters returned by find_tied_parameters
expected_tied_module_names, expected_tied_modules = map(
list, zip(*sorted(modules_to_treat, key=lambda x: x[0]))
)

assert module_size_with_ties == module_size + (num_layers - 1) * bias_size
assert tied_module_names == expected_tied_module_names
assert tied_modules == expected_tied_modules

@require_non_cpu
def test_load_state_dict(self):
state_dict = {k: torch.randn(4, 5) for k in ["a", "b", "c"]}
Expand Down
Loading