- incompressible:
$\nabla \cdot \underline{V} = 0$ - conservative:
$\underline{V} = \nabla \phi \implies \nabla \times \underline{V} = \nabla \times \nabla \phi = 0$ (irrotational)
where:
$\mu = \phi - \phi_i$ $\sigma = (\underline{e}_n \cdot \nabla)(\phi - \phi_i)$ $\phi_\infty(\underline{r}_p) = \iint_{S_\infty} \left[ (\underline{e}_n \cdot \nabla) \phi \ln{ \left( \frac{\lVert \underline{r} - \underline{r}_p \rVert}{2\pi} \right) } - \phi (\underline{e}_n \cdot \nabla) \ln{ \left( \frac{\lVert \underline{r} - \underline{r}_p \rVert}{2\pi} \right) } \right] \mathrm{d}S$
if
note:
Notable Observations:
-
A vector field
$\underline{V}: U \to \mathbb{R}^n$ , where$\mathbb{U}$ is an open subset of$\mathbb{R}^n$ , is said to be conservative if there exists a$\mathrm{C}^1$ (continuously differentiable) scalar field$\phi$ on$\mathbb{U}$ such that$\underline{V} = \nabla \phi$ . -
According to Poincaré's Lemma, A continuously differentiable (
$\mathrm{C}^1$ ) vector field$\underline{V}$ defined on a simply connected subset$\mathbb{U}$ of$\mathbb{R}^n$ ($\underline{V} \colon \mathbb{U} \subseteq \mathbb{R}^n \to \mathbb{R}^n$ ), is conservative if and only if it is irrotational throughout its domain ($\nabla \times \underline{V} = 0$ ,$\forall \underline{x} \in \mathbb{U}$ ). -
Circulation
$\Gamma = \oint_{C} \underline{V} \cdot \mathrm{d} \underline{l} = \iint_S \nabla \times \underline{V} \cdot \mathrm{d}\underline{S}$ In a conservative vector field this integral evaluates to zero for every closed curve.$\Gamma = \oint_{C} \underline{V} \cdot \mathrm{d} \underline{l} = \iint_S \nabla \times \underline{V} \cdot \mathrm{d}\underline{S} = \iint_S \nabla \times \nabla \phi \cdot \mathrm{d}\underline{S} = 0$ -
The space exterior to a 2D object (e.g. an airfoil) is not simply connected
where:
-
$B_{ij} = \frac{1}{2\pi} \iint_{S_j} \ln{(\lVert \underline{r} - \underline{r}_{cp_i} \rVert)} \mathrm{d}{S_j} = \frac{1}{2\pi} \iint_{t_1}^{t_2} \ln \left(\sqrt{(t_{cp_i} - t)^2 + n_{cp_i}^2} \right) \mathrm{d}{t_j}$ -
$C_{ij} = \frac{1}{2\pi} \iint_{S_j} (\underline{e}_n \cdot \nabla) \ln{(\lVert \underline{r} - \underline{r}_{cp_i} \rVert)} \mathrm{d}{S_j} = \frac{1}{2\pi} \iint_{S_j} \frac{n_{cp_i}}{(t_{cp_i} - t)^2 + n_{cp_i}^2} \mathrm{d}{t_j}$
from Kutta Condition:
-
Calculation of Non-Lifting Potential Flow about 2D arbitrarily-shaped rigid bodies
- Steady simulations
- Unsteady simulations
-
Calculation of Lifting Pseudo-Potential Flow around 2D arbitrarily-shaped rigid bodies
- Steady state simulations with flat rigid wake model
- Steady state iterative simulations with flexible wake model
- Unsteady simulations with a shedding wake model