-
Notifications
You must be signed in to change notification settings - Fork 6.4k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Create visualizer11.py #698
Open
AshuKV
wants to merge
1
commit into
junyanz:master
Choose a base branch
from
AshuKV:patch-1
base: master
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,232 @@ | ||
import numpy as np | ||
import os | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. util/visualizer11.py |
||
import sys | ||
import ntpath | ||
import time | ||
from . import util, html | ||
from subprocess import Popen, PIPE | ||
#from scipy.misc import imresize | ||
|
||
if sys.version_info[0] == 2: | ||
VisdomExceptionBase = Exception | ||
else: | ||
VisdomExceptionBase = ConnectionError | ||
|
||
|
||
def save_images(webpage, visuals, image_path, aspect_ratio=1.0, width=256): | ||
"""Save images to the disk. | ||
|
||
Parameters: | ||
webpage (the HTML class) -- the HTML webpage class that stores these imaegs (see html.py for more details) | ||
visuals (OrderedDict) -- an ordered dictionary that stores (name, images (either tensor or numpy) ) pairs | ||
image_path (str) -- the string is used to create image paths | ||
aspect_ratio (float) -- the aspect ratio of saved images | ||
width (int) -- the images will be resized to width x width | ||
|
||
This function will save images stored in 'visuals' to the HTML file specified by 'webpage'. | ||
""" | ||
image_dir = webpage.get_image_dir() | ||
short_path = ntpath.basename(image_path[0]) | ||
name = os.path.splitext(short_path)[0] | ||
|
||
webpage.add_header(name) | ||
ims, txts, links = [], [], [] | ||
|
||
for label, im_data in visuals.items(): | ||
im = util.tensor2im(im_data) | ||
image_name = '%s_%s.png' % (name, label) | ||
save_path = os.path.join(image_dir, image_name) | ||
h, w, _ = im.shape | ||
if aspect_ratio > 1.0: | ||
# #im = imresize(im, (h, int(w * aspect_ratio)), interp='bicubic') | ||
im = np.array(Image.fromarray(im).resize((h, int(w * aspect_ratio)))) | ||
if aspect_ratio < 1.0: | ||
#im = imresize(im, (int(h / aspect_ratio), w), interp='bicubic') | ||
im = np.array(Image.fromarray(im).resize((int(h / aspect_ratio), w))) | ||
util.save_image(im, save_path) | ||
|
||
ims.append(image_name) | ||
txts.append(label) | ||
links.append(image_name) | ||
webpage.add_images(ims, txts, links, width=width) | ||
|
||
|
||
class Visualizer(): | ||
"""This class includes several functions that can display/save images and print/save logging information. | ||
|
||
It uses a Python library 'visdom' for display, and a Python library 'dominate' (wrapped in 'HTML') for creating HTML files with images. | ||
""" | ||
|
||
def __init__(self, opt): | ||
"""Initialize the Visualizer class | ||
|
||
Parameters: | ||
opt -- stores all the experiment flags; needs to be a subclass of BaseOptions | ||
Step 1: Cache the training/test options | ||
Step 2: connect to a visdom server | ||
Step 3: create an HTML object for saveing HTML filters | ||
Step 4: create a logging file to store training losses | ||
""" | ||
self.opt = opt # cache the option | ||
self.display_id = opt.display_id | ||
self.use_html = opt.isTrain and not opt.no_html | ||
self.win_size = opt.display_winsize | ||
self.name = opt.name | ||
self.port = opt.display_port | ||
self.saved = False | ||
if self.display_id > 0: # connect to a visdom server given <display_port> and <display_server> | ||
import visdom | ||
self.ncols = opt.display_ncols | ||
self.vis = visdom.Visdom(server=opt.display_server, port=opt.display_port, env=opt.display_env) | ||
if not self.vis.check_connection(): | ||
self.create_visdom_connections() | ||
|
||
if self.use_html: # create an HTML object at <checkpoints_dir>/web/; images will be saved under <checkpoints_dir>/web/images/ | ||
self.web_dir = os.path.join(opt.checkpoints_dir, opt.name, 'web') | ||
self.img_dir = os.path.join(self.web_dir, 'images') | ||
print('create web directory %s...' % self.web_dir) | ||
util.mkdirs([self.web_dir, self.img_dir]) | ||
# create a logging file to store training losses | ||
self.log_name = os.path.join(opt.checkpoints_dir, opt.name, 'loss_log.txt') | ||
with open(self.log_name, "a") as log_file: | ||
now = time.strftime("%c") | ||
log_file.write('================ Training Loss (%s) ================\n' % now) | ||
|
||
def reset(self): | ||
"""Reset the self.saved status""" | ||
self.saved = False | ||
|
||
def create_visdom_connections(self): | ||
"""If the program could not connect to Visdom server, this function will start a new server at port < self.port > """ | ||
cmd = sys.executable + ' -m visdom.server -p %d &>/dev/null &' % self.port | ||
print('\n\nCould not connect to Visdom server. \n Trying to start a server....') | ||
print('Command: %s' % cmd) | ||
Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE) | ||
|
||
def display_current_results(self, visuals, epoch, save_result): | ||
"""Display current results on visdom; save current results to an HTML file. | ||
|
||
Parameters: | ||
visuals (OrderedDict) - - dictionary of images to display or save | ||
epoch (int) - - the current epoch | ||
save_result (bool) - - if save the current results to an HTML file | ||
""" | ||
if self.display_id > 0: # show images in the browser using visdom | ||
ncols = self.ncols | ||
if ncols > 0: # show all the images in one visdom panel | ||
ncols = min(ncols, len(visuals)) | ||
h, w = next(iter(visuals.values())).shape[:2] | ||
table_css = """<style> | ||
table {border-collapse: separate; border-spacing: 4px; white-space: nowrap; text-align: center} | ||
table td {width: % dpx; height: % dpx; padding: 4px; outline: 4px solid black} | ||
</style>""" % (w, h) # create a table css | ||
# create a table of images. | ||
title = self.name | ||
label_html = '' | ||
label_html_row = '' | ||
images = [] | ||
idx = 0 | ||
for label, image in visuals.items(): | ||
image_numpy = util.tensor2im(image) | ||
label_html_row += '<td>%s</td>' % label | ||
images.append(image_numpy.transpose([2, 0, 1])) | ||
idx += 1 | ||
if idx % ncols == 0: | ||
label_html += '<tr>%s</tr>' % label_html_row | ||
label_html_row = '' | ||
white_image = np.ones_like(image_numpy.transpose([2, 0, 1])) * 255 | ||
while idx % ncols != 0: | ||
images.append(white_image) | ||
label_html_row += '<td></td>' | ||
idx += 1 | ||
if label_html_row != '': | ||
label_html += '<tr>%s</tr>' % label_html_row | ||
try: | ||
self.vis.images(images, nrow=ncols, win=self.display_id + 1, | ||
padding=2, opts=dict(title=title + ' images')) | ||
label_html = '<table>%s</table>' % label_html | ||
self.vis.text(table_css + label_html, win=self.display_id + 2, | ||
opts=dict(title=title + ' labels')) | ||
except VisdomExceptionBase: | ||
self.create_visdom_connections() | ||
|
||
else: # show each image in a separate visdom panel; | ||
idx = 1 | ||
try: | ||
for label, image in visuals.items(): | ||
image_numpy = util.tensor2im(image) | ||
self.vis.image(image_numpy.transpose([2, 0, 1]), opts=dict(title=label), | ||
win=self.display_id + idx) | ||
idx += 1 | ||
except VisdomExceptionBase: | ||
self.create_visdom_connections() | ||
|
||
if self.use_html and (save_result or not self.saved): # save images to an HTML file if they haven't been saved. | ||
self.saved = True | ||
# save images to the disk | ||
for label, image in visuals.items(): | ||
image_numpy = util.tensor2im(image) | ||
img_path = os 228 lines (200 sloc) 10.5 KB | ||
import numpy as np | ||
import os | ||
import sys.path.join(self.img_dir, 'epoch%.3d_%s.png' % (epoch, label)) | ||
util.save_image(image_numpy, img_path) | ||
|
||
# update website | ||
webpage = html.HTML(self.web_dir, 'Experiment name = %s' % self.name, refresh=1) | ||
for n in range(epoch, 0, -1): | ||
webpage.add_header('epoch [%d]' % n) | ||
ims, txts, links = [], [], [] | ||
|
||
for label, image_numpy in visuals.items(): | ||
image_numpy = util.tensor2im(image) | ||
img_path = 'epoch%.3d_%s.png' % (n, label) | ||
ims.append(img_path) | ||
txts.append(label) | ||
links.append(img_path) | ||
webpage.add_images(ims, txts, links, width=self.win_size) | ||
webpage.save() | ||
|
||
def plot_current_losses(self, epoch, counter_ratio, losses): | ||
"""display the current losses on visdom display: dictionary of error labels and values | ||
|
||
Parameters: | ||
epoch (int) -- current epoch | ||
counter_ratio (float) -- progress (percentage) in the current epoch, between 0 to 1 | ||
losses (OrderedDict) -- training losses stored in the format of (name, float) pairs | ||
""" | ||
if not hasattr(self, 'plot_data'): | ||
self.plot_data = {'X': [], 'Y': [], 'legend': list(losses.keys())} | ||
self.plot_data['X'].append(epoch + counter_ratio) | ||
self.plot_data['Y'].append([losses[k] for k in self.plot_data['legend']]) | ||
try: | ||
self.vis.line( | ||
X=np.stack([np.array(self.plot_data['X'])] * len(self.plot_data['legend']), 1), | ||
Y=np.array(self.plot_data['Y']), | ||
opts={ | ||
'title': self.name + ' loss over time', | ||
'legend': self.plot_data['legend'], | ||
'xlabel': 'epoch', | ||
'ylabel': 'loss'}, | ||
win=self.display_id) | ||
except VisdomExceptionBase: | ||
self.create_visdom_connections() | ||
|
||
# losses: same format as |losses| of plot_current_losses | ||
def print_current_losses(self, epoch, iters, losses, t_comp, t_data): | ||
"""print current losses on console; also save the losses to the disk | ||
|
||
Parameters: | ||
epoch (int) -- current epoch | ||
iters (int) -- current training iteration during this epoch (reset to 0 at the end of every epoch) | ||
losses (OrderedDict) -- training losses stored in the format of (name, float) pairs | ||
t_comp (float) -- computational time per data point (normalized by batch_size) | ||
t_data (float) -- data loading time per data point (normalized by batch_size) | ||
""" | ||
message = '(epoch: %d, iters: %d, time: %.3f, data: %.3f) ' % (epoch, iters, t_comp, t_data) | ||
for k, v in losses.items(): | ||
message += '%s: %.3f ' % (k, v) | ||
|
||
print(message) # print the message | ||
with open(self.log_name, "a") as log_file: | ||
log_file.write('%s\n' % message) # save the message |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.