Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add general integer exponents #128

Merged
merged 17 commits into from
Jan 17, 2025
Merged
Show file tree
Hide file tree
Changes from 16 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions docs/src/references/changelog.rst
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,8 @@ Added
Fixed
#####

* Refactor the ``InversePowerLawPotential`` class to restrict the exponent to integer
values
* Ensured consistency of ``dtype`` and ``device`` in the ``Potential`` and
``Calculator`` classses
* Fixed consistency of ``dtype`` and ``device`` in the ``SplinePotential`` class
Expand Down
4 changes: 2 additions & 2 deletions examples/8-combined-potential.py
Original file line number Diff line number Diff line change
Expand Up @@ -65,8 +65,8 @@
# evaluation, and so one has to set it also for the combined potential, even if it is
# not used explicitly in the evaluation of the combination.

pot_1 = InversePowerLawPotential(exponent=1.0, smearing=smearing)
pot_2 = InversePowerLawPotential(exponent=2.0, smearing=smearing)
pot_1 = InversePowerLawPotential(exponent=1, smearing=smearing)
pot_2 = InversePowerLawPotential(exponent=2, smearing=smearing)

potential = CombinedPotential(potentials=[pot_1, pot_2], smearing=smearing)

Expand Down
1 change: 0 additions & 1 deletion src/torchpme/calculators/ewald.py
Original file line number Diff line number Diff line change
Expand Up @@ -138,6 +138,5 @@ def _compute_kspace(
charge_tot = torch.sum(charges, dim=0)
prefac = self.potential.background_correction()
energy -= 2 * prefac * charge_tot * ivolume

# Compensate for double counting of pairs (i,j) and (j,i)
return energy / 2
5 changes: 5 additions & 0 deletions src/torchpme/lib/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
generate_kvectors_for_mesh,
get_ns_mesh,
)
from .math import CustomExp1, gamma, gammaincc_over_powerlaw, torch_exp1
from .mesh_interpolator import MeshInterpolator

__all__ = [
Expand All @@ -16,4 +17,8 @@
"generate_kvectors_for_ewald",
"generate_kvectors_for_mesh",
"get_ns_mesh",
"gamma",
"CustomExp1",
"gammaincc_over_powerlaw",
"torch_exp1",
]
56 changes: 56 additions & 0 deletions src/torchpme/lib/math.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,56 @@
import torch
from scipy.special import exp1
from torch.special import gammaln


def gamma(x: torch.Tensor) -> torch.Tensor:
"""
(Complete) Gamma function.

pytorch has not implemented the commonly used (complete) Gamma function. We define
it in a custom way to make autograd work as in
https://discuss.pytorch.org/t/is-there-a-gamma-function-in-pytorch/17122
"""
return torch.exp(gammaln(x))


class CustomExp1(torch.autograd.Function):
"""Custom exponential integral function Exp1(x) to have an autograd-compatible version."""

@staticmethod
def forward(ctx, input):
ctx.save_for_backward(input)
input_numpy = input.cpu().numpy() if not input.is_cpu else input.numpy()
return torch.tensor(exp1(input_numpy), device=input.device, dtype=input.dtype)

@staticmethod
def backward(ctx, grad_output):
(input,) = ctx.saved_tensors
return -grad_output * torch.exp(-input) / input


def torch_exp1(input):
"""Wrapper for the custom exponential integral function."""
return CustomExp1.apply(input)


def gammaincc_over_powerlaw(exponent: torch.Tensor, z: torch.Tensor) -> torch.Tensor:
"""Function to compute the regularized incomplete gamma function complement for integer exponents."""
if exponent == 1:
return torch.exp(-z) / z
if exponent == 2:
return torch.sqrt(torch.pi / z) * torch.erfc(torch.sqrt(z))
if exponent == 3:
return torch_exp1(z)
if exponent == 4:
return 2 * (
torch.exp(-z) - torch.sqrt(torch.pi * z) * torch.erfc(torch.sqrt(z))
)
if exponent == 5:
return torch.exp(-z) - z * torch_exp1(z)
if exponent == 6:
return (
(2 - 4 * z) * torch.exp(-z)
+ 4 * torch.sqrt(torch.pi * z**3) * torch.erfc(torch.sqrt(z))
) / 3
raise ValueError(f"Unsupported exponent: {exponent}")
31 changes: 12 additions & 19 deletions src/torchpme/potentials/inversepowerlaw.py
Original file line number Diff line number Diff line change
@@ -1,20 +1,11 @@
from typing import Optional

import torch
from torch.special import gammainc, gammaincc, gammaln
from torch.special import gammainc

from .potential import Potential


def gamma(x: torch.Tensor) -> torch.Tensor:
"""
(Complete) Gamma function.
from torchpme.lib import gamma, gammaincc_over_powerlaw

pytorch has not implemented the commonly used (complete) Gamma function. We define
it in a custom way to make autograd work as in
https://discuss.pytorch.org/t/is-there-a-gamma-function-in-pytorch/17122
"""
return torch.exp(gammaln(x))
from .potential import Potential


class InversePowerLawPotential(Potential):
Expand Down Expand Up @@ -46,16 +37,16 @@ class InversePowerLawPotential(Potential):

def __init__(
self,
exponent: float,
exponent: int,
smearing: Optional[float] = None,
exclusion_radius: Optional[float] = None,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
):
super().__init__(smearing, exclusion_radius, dtype, device)

if exponent <= 0 or exponent > 3:
raise ValueError(f"`exponent` p={exponent} has to satisfy 0 < p <= 3")
# function call to check the validity of the exponent
gammaincc_over_powerlaw(exponent, torch.tensor(1.0, dtype=dtype, device=device))
self.register_buffer(
"exponent", torch.tensor(exponent, dtype=self.dtype, device=self.device)
)
Expand Down Expand Up @@ -130,9 +121,7 @@ def lr_from_k_sq(self, k_sq: torch.Tensor) -> torch.Tensor:
# for consistency reasons.
masked = torch.where(x == 0, 1.0, x) # avoid NaNs in backwards, see Coulomb
return torch.where(
k_sq == 0,
0.0,
prefac * gammaincc(peff, masked) / masked**peff * gamma(peff),
k_sq == 0, 0.0, prefac * gammaincc_over_powerlaw(exponent, masked)
)

def self_contribution(self) -> torch.Tensor:
Expand All @@ -145,7 +134,11 @@ def self_contribution(self) -> torch.Tensor:
return 1 / gamma(phalf + 1) / (2 * self.smearing**2) ** phalf

def background_correction(self) -> torch.Tensor:
# "charge neutrality" correction for 1/r^p potential
# "charge neutrality" correction for 1/r^p potential diverges for exponent p = 3
# and is not needed for p > 3 , so we set it to zero (see in
# https://doi.org/10.48550/arXiv.2412.03281 SI section)
if self.exponent >= 3:
return torch.tensor(0.0, dtype=self.dtype, device=self.device)
if self.smearing is None:
raise ValueError(
"Cannot compute background correction without specifying `smearing`."
Expand Down
6 changes: 3 additions & 3 deletions tests/calculators/test_values_ewald.py
Original file line number Diff line number Diff line change
Expand Up @@ -100,7 +100,7 @@ def test_madelung(crystal_name, scaling_factor, calc_name):
lr_wavelength = 0.5 * smearing
calc = EwaldCalculator(
InversePowerLawPotential(
exponent=1.0,
exponent=1,
smearing=smearing,
),
lr_wavelength=lr_wavelength,
Expand All @@ -111,7 +111,7 @@ def test_madelung(crystal_name, scaling_factor, calc_name):
smearing = sr_cutoff / 5.0
calc = PMECalculator(
InversePowerLawPotential(
exponent=1.0,
exponent=1,
smearing=smearing,
),
mesh_spacing=smearing / 8,
Expand Down Expand Up @@ -198,7 +198,7 @@ def test_wigner(crystal_name, scaling_factor):
# Compute potential and compare against reference
calc = EwaldCalculator(
InversePowerLawPotential(
exponent=1.0,
exponent=1,
smearing=smeareff,
),
lr_wavelength=smeareff / 2,
Expand Down
Loading
Loading