Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

SplinePotential device compatibility #138

Merged
merged 7 commits into from
Jan 8, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions docs/src/references/changelog.rst
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,7 @@ changelog <https://keepachangelog.com/en/1.1.0/>`_ format. This project follows
Fixed
#####

* Fixed consistency of ``dtype`` and ``device`` in the ``SplinePotential`` class
* Fix inconsistent ``cutoff`` in neighbor list example
* All calculators now check if the cell is zero if the potential is range-separated

Expand Down
15 changes: 12 additions & 3 deletions src/torchpme/potentials/spline.py
Original file line number Diff line number Diff line change
Expand Up @@ -74,6 +74,9 @@ def __init__(
if len(y_grid) != len(r_grid):
raise ValueError("Length of radial grid and value array mismatch.")

r_grid = r_grid.to(dtype=dtype, device=device)
y_grid = y_grid.to(dtype=dtype, device=device)
PicoCentauri marked this conversation as resolved.
Show resolved Hide resolved

if reciprocal:
if torch.min(r_grid) <= 0.0:
raise ValueError(
Expand All @@ -89,6 +92,8 @@ def __init__(
k_grid = torch.pi * 2 * torch.reciprocal(r_grid).flip(dims=[0])
else:
k_grid = r_grid.clone()
else:
k_grid = k_grid.to(dtype=dtype, device=device)

if yhat_grid is None:
# computes automatically!
Expand All @@ -98,6 +103,8 @@ def __init__(
y_grid,
compute_second_derivatives(r_grid, y_grid),
)
else:
yhat_grid = yhat_grid.to(dtype=dtype, device=device)

# the function is defined for k**2, so we define the grid accordingly
if reciprocal:
Expand All @@ -108,12 +115,14 @@ def __init__(
self._krn_spline = CubicSpline(k_grid**2, yhat_grid)

if y_at_zero is None:
self._y_at_zero = self._spline(torch.tensor([0.0]))
self._y_at_zero = self._spline(torch.zeros(1, dtype=dtype, device=device))
else:
self._y_at_zero = y_at_zero

if yhat_at_zero is None:
self._yhat_at_zero = self._krn_spline(torch.tensor([0.0]))
self._yhat_at_zero = self._krn_spline(
torch.zeros(1, dtype=dtype, device=device)
)
else:
self._yhat_at_zero = yhat_at_zero

Expand All @@ -140,7 +149,7 @@ def self_contribution(self) -> torch.Tensor:
return self._y_at_zero

def background_correction(self) -> torch.Tensor:
return torch.tensor([0.0])
return torch.zeros(1)

from_dist.__doc__ = Potential.from_dist.__doc__
lr_from_dist.__doc__ = Potential.lr_from_dist.__doc__
Expand Down
2 changes: 1 addition & 1 deletion src/torchpme/utils/splines.py
Original file line number Diff line number Diff line change
Expand Up @@ -198,7 +198,7 @@ def compute_second_derivatives(
d2y = _solve_tridiagonal(a, b, c, d)

# Converts back to the original dtype
return d2y.to(x_points.dtype)
return d2y.to(dtype=x_points.dtype, device=x_points.device)


def compute_spline_ft(
Expand Down
32 changes: 32 additions & 0 deletions tests/test_potentials.py
Original file line number Diff line number Diff line change
Expand Up @@ -573,3 +573,35 @@ def test_combined_potential_learnable_weights():
loss.backward()
optimizer.step()
assert torch.allclose(combined.weights, weights - 0.1)


@pytest.mark.parametrize("device", ["cpu", "cuda"])
@pytest.mark.parametrize("dtype", [torch.float32, torch.float64])
@pytest.mark.parametrize(
"potential_class", [CoulombPotential, InversePowerLawPotential, SplinePotential]
)
def test_potential_device_dtype(potential_class, device, dtype):
if device == "cuda" and not torch.cuda.is_available():
pytest.skip("CUDA is not available")

smearing = 1.0
exponent = 1.0

if potential_class is InversePowerLawPotential:
potential = potential_class(
exponent=exponent, smearing=smearing, dtype=dtype, device=device
)
elif potential_class is SplinePotential:
x_grid = torch.linspace(0, 20, 100, device=device, dtype=dtype)
y_grid = torch.exp(-(x_grid**2) * 0.5)
potential = potential_class(
r_grid=x_grid, y_grid=y_grid, reciprocal=False, dtype=dtype, device=device
)
else:
potential = potential_class(smearing=smearing, dtype=dtype, device=device)

dists = torch.linspace(0.1, 10.0, 100, device=device, dtype=dtype)
potential_lr = potential.lr_from_dist(dists)

assert potential_lr.device.type == device
assert potential_lr.dtype == dtype
Loading