PyTorch implementation of a 3D UNet model designed to remove noise from Electron Density data generated using stochastic Density Functional Theory (sDFT) calculations. The primary objective of this implementation is to reduce noise and enhance the overall quality of the electron density.
usage: main.py [-h] [--epochs EPOCHS] [--lr LR] [--batch_size BATCH_SIZE] [--print_freq PRINT_FREQ] [--restart] [--log_dir LOG_DIR] [--log_file LOG_FILE] [--train] [--train_data_dir TRAIN_DATA_DIR]
[--train_size TRAIN_SIZE] [--val_data_dir VAL_DATA_DIR] [--val_size VAL_SIZE] [--test] [--test_data_dir TEST_DATA_DIR] [--test_size TEST_SIZE] [--print_density] [--pred_dir PRED_DIR]
De-noise Electron Density with U-Net
options:
-h, --help show this help message and exit
--epochs EPOCHS number of epochs/steps
--lr LR learning rate
--batch_size BATCH_SIZE
Batch size
--print_freq PRINT_FREQ
Print frequency of the logfiles for restarting
--restart Do you want to restart from a checkpoint file ?
--log_dir LOG_DIR logfile/checkpoint file directory
--log_file LOG_FILE log/checkpoint file name
--train Do you want to Train the model ?
--train_data_dir TRAIN_DATA_DIR
Directory of training data
--train_size TRAIN_SIZE
Training data size (if not specified takes all data)
--val_data_dir VAL_DATA_DIR
Directory of validation data
--val_size VAL_SIZE Validation data size (if not specified takes all data)
--test Do you want to Test the model ?
--test_data_dir TEST_DATA_DIR
Directory of test data
--test_size TEST_SIZE
Test data size (if not specified takes all data)
--print_density Do you want to print the density predictions ?
--pred_dir PRED_DIR Directory for printing density predictions with ground truth data
If you use this code or find it helpful in your research, please consider citing the project:
@misc{YourProjectName,
author = {Your Name},
title = {De-noise Electron Density with U-Net},
year = {Year},
howpublished = {\url{GitHub repository URL}},
note = {Online; accessed Date}
}