-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
32 lines (26 loc) · 1.09 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import torch
from lib.game_env import BallGameEnv
from lib.dqn_agent import DQNAgent
import argparse
def test(model_path, episodes=10, render=True):
env = BallGameEnv(render_mode="human" if render else None)
agent = DQNAgent(env.observation_space, env.action_space)
# 使用 weights_only=True 来避免警告
agent.model.load_state_dict(torch.load(model_path, weights_only=True))
agent.epsilon = 0 # 测试时不需要探索
for e in range(episodes):
state = env.reset()
total_reward = 0
done = False
while not done:
action = agent.act(state)
state, reward, done, _ = env.step(action)
total_reward += reward
print(f"Episode: {e+1}, Score: {total_reward}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, required=True)
parser.add_argument("--episodes", type=int, default=10)
parser.add_argument("--render", action="store_true")
args = parser.parse_args()
test(args.model, args.episodes, args.render)