Skip to content

medialab-ku/ConvNeXtPose

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ConvNeXtPose

Introduction

This repo is official PyTorch implementation of ConvNeXtPose: A Fast Accurate Method for 3D Human Pose Estimation and its AR Fitness Application in Mobile Devices(IEEE Access 2023).

Dependencies

This code is tested under Ubuntu 20.04, CUDA 11.6, cuDNN 8.4.1 environment with single NVIDIA RTX 3090Ti GPUs.

Python 3.8.10 version is used for development.

Directory

Root

The ${ROOT} is described as below.

${ROOT}
|-- data
|-- demo
|-- common
|-- main
|-- tool
|-- vis
`-- output
  • data contains data loading codes and soft links to images and annotations directories.
  • demo contains demo codes.
  • common contains kernel codes for 3d multi-person pose estimation system.
  • main contains high-level codes for training or testing the network.
  • tool contains data pre-processing codes. You don't have to run this code. I provide pre-processed data below.
  • vis contains scripts for 3d visualization.
  • output contains log, trained models, visualized outputs, and test result.

Data

You need to follow directory structure of the data as below.

${ROOT}
|-- data
|   |-- Human36M
|   |   |-- bbox_root
|   |   |   |-- bbox_root_human36m_output.json
|   |   |-- images
|   |   |-- annotations
|   |-- MPII
|   |   |-- images
|   |   |-- annotations
|   |-- MSCOCO
|   |   |-- bbox_root
|   |   |   |-- bbox_root_coco_output.json
|   |   |-- images
|   |   |   |-- train2017
|   |   |   |-- val2017
|   |   |-- annotations
|   |-- MuCo
|   |   |-- data
|   |   |   |-- augmented_set
|   |   |   |-- unaugmented_set
|   |   |   |-- MuCo-3DHP.json
|   |-- MuPoTS
|   |   |-- bbox_root
|   |   |   |-- bbox_mupots_output.json
|   |   |-- data
|   |   |   |-- MultiPersonTestSet
|   |   |   |-- MuPoTS-3D.json

To download multiple files from Google drive without compressing them, try this. If you have a problem with 'Download limit' problem when tried to download dataset from google drive link, please try this trick.

* Go the shared folder, which contains files you want to copy to your drive  
* Select all the files you want to copy  
* In the upper right corner click on three vertical dots and select “make a copy”  
* Then, the file is copied to your personal google drive account. You can download it from your personal account.  

Output

You need to follow the directory structure of the output folder as below.

${ROOT}
|-- output
|-- |-- log
|-- |-- model_dump
|-- |-- result
`-- |-- vis
  • Creating output folder as soft link form is recommended instead of folder form because it would take large storage capacity.
  • log folder contains training log file.
  • model_dump folder contains saved checkpoints for each epoch.
  • result folder contains final estimation files generated in the testing stage.
  • vis folder contains visualized results.

3D visualization

  • Run $DB_NAME_img_name.py to get image file names in .txt format.
  • Place your test result files (preds_2d_kpt_$DB_NAME.mat, preds_3d_kpt_$DB_NAME.mat) in single or multi folder.
  • Run draw_3Dpose_$DB_NAME.m

Running ConvNeXtPose

Start

  • In the main/config.py, you can change settings of the model including dataset to use, network backbone, and input size and so on.

Train

In the main folder, run

python train.py --gpu 0-1

to train the network on the GPU 0,1.

If you want to continue experiment, run

python train.py --gpu 0-1 --continue

--gpu 0,1 can be used instead of --gpu 0-1.

Test

Place trained model at the output/model_dump/.

In the main folder, run

python test.py --gpu 0-1 --test_epoch 20-21

to test the network on the GPU 0,1 with 20th and 21th epoch trained model. --gpu 0,1 can be used instead of --gpu 0-1.

Results

Here I report the performance of the ConvNeXtPose.

  • Download pre-trained models of the ConvNeXtPose in here

Human3.6M dataset using protocol 1

For the evaluation, you can run test.py or there are evaluation codes in Human36M.

Human3.6M dataset using protocol 2

For the evaluation, you can run test.py or there are evaluation codes in Human36M.

Fitness Application

We will upload the Application code soon in the future

Acknowledgement

Part of our code is borrowed from PoseNet. We thank the authors for releasing the codes.

Reference

Data:

  @inproceedings{nguyen2023convnextpose,
  title={ConvNeXtPose: A Fast Accurate Method for 3D Human Pose Estimation and its AR Fitness Application in Mobile Devices},
  author={Nguyen, Hong Son and Kim, MyoungGon and Im, Changbin and Han, Sanghoon and Han, JungHyun},
  journal={IEEE Access},
  year={2023},
  publisher={IEEE}
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published